Favier Pierre, Dupraz Kevin, Cassou Kevin, Liu Xing, Martens Aurélien, Ndiaye Cheikh Fall, Williams Themistoklis, Zomer Fabian
J Opt Soc Am A Opt Image Sci Vis. 2017 Aug 1;34(8):1351-1359. doi: 10.1364/JOSAA.34.001351.
Nonparaxial perturbative equations are derived from the scalar wave equation by taking into account spatiotemporal couplings. General solutions are obtained in Fourier space and further transformed back in direct space. They depend on parameters that can be used to match various boundary conditions and the perturbative expansion of any nonparaxial exact solutions. This parametrization is used to study the sensitivity of direct electron acceleration off an ultrashort tightly focused laser pulse to nonparaxial corrections of radially polarized electromagnetic fields.
非傍轴微扰方程是通过考虑时空耦合从标量波动方程推导出来的。在傅里叶空间中获得通解,并进一步变换回实空间。它们依赖于可用于匹配各种边界条件以及任何非傍轴精确解的微扰展开的参数。这种参数化用于研究超短紧聚焦激光脉冲作用下的直接电子加速对径向极化电磁场的非傍轴修正的敏感性。