Department of Automation, Xiamen University.
Xiamen Research Institute of National Center of Healthcare Big Data, Xiamen 361005, China.
Bioinformatics. 2018 Mar 1;34(5):881-883. doi: 10.1093/bioinformatics/btx646.
In gene expression studies, differential expression (DE) analysis has been widely used to identify genes with shifted expression mean between groups. Recently, differential variability (DV) analysis has been increasingly applied as analyzing changed expression variability (e.g. the changes in expression variance) between groups may reveal underlying genetic heterogeneity and undetected interactions, which has great implications in many fields of biology. An easy-to-use tool for DV analysis is needed.
We develop AEGS for DV analysis, to identify aberrantly expressed gene sets in diseased cases but not in controls. AEGS can rank individual genes in an aberrantly expressed gene set by each gene's relative contribution to the total degree of aberrant expression, prioritizing top genes. AEGS can be used for discovering gene sets with disease-specific expression variability changes.
AEGS web server is accessible at http://bmi.xmu.edu.cn:8003/AEGS, where a stand-alone AEGS application can also be downloaded.
在基因表达研究中,差异表达(DE)分析已被广泛用于识别组间表达均值发生变化的基因。最近,差异变异性(DV)分析的应用越来越多,因为分析组间表达变异性(例如表达方差的变化)的变化可能揭示潜在的遗传异质性和未检测到的相互作用,这在生物学的许多领域都具有重要意义。因此,需要一种易于使用的 DV 分析工具。
我们开发了用于 DV 分析的 AEGS,以识别疾病病例中异常表达的基因集,但在对照中不表达。AEGS 可以通过每个基因对总异常表达程度的相对贡献对异常表达基因集中的单个基因进行排名,从而优先考虑顶级基因。AEGS 可用于发现具有疾病特异性表达变异性变化的基因集。
AEGS 网络服务器可在 http://bmi.xmu.edu.cn:8003/AEGS 访问,也可以下载独立的 AEGS 应用程序。