Suppr超能文献

调控太赫兹超材料中的表面等离激元诱导透明共振

Tailoring the plasmon-induced transparency resonances in terahertz metamaterials.

作者信息

Liu Meng, Tian Zhen, Zhang Xueqian, Gu Jianqiang, Ouyang Chunmei, Han Jiaguang, Zhang Weili

出版信息

Opt Express. 2017 Aug 21;25(17):19844-19855. doi: 10.1364/OE.25.019844.

Abstract

We experimentally demonstrate that a coupled metamaterial composed of sub-wavelength split-ring-resonators (SRRs) and closed-ring-resonators (CRRs) can tailor the plasmon-induced-transparency (PIT) resonances when the external electric field is parallel to the gaps of SRRs. Rotating or moving SRRs in vertical direction plays a critical role in the EIT functionality, while an excellent robust performance can be acquired via moving SRRs in the horizontal direction. Based on the results, a polarization-independent and polarization-dependent planar metamaterial are designed, fabricated and measured. In contrast to the spectral property of the polarization-independent medium, the polarization-dependent one is featured by isolated PIT phenomena in the frequency-domain, with respect to the horizontal and vertical polarized incident beam. Transmission responses of the PIT metamaterial are characterized with terahertz time-domain spectroscopy, showing a good agreement with the rigorous numerical simulation results. The presented work delivers a unique way to excite and modulate the PIT response, toward developing polarization-independent and polarization-dependent slow-light building blocks, ultrasensitive sensors and narrow-band filters functioning in the THz regime.

摘要

我们通过实验证明,当外部电场与亚波长裂环谐振器(SRR)的间隙平行时,由亚波长裂环谐振器(SRR)和闭环谐振器(CRR)组成的耦合超材料可以调整等离子体诱导透明(PIT)共振。在垂直方向旋转或移动SRR对电磁诱导透明(EIT)功能起着关键作用,而通过在水平方向移动SRR可以获得出色的稳健性能。基于这些结果,设计、制作并测量了一种非偏振依赖和偏振依赖的平面超材料。与非偏振依赖介质的光谱特性相比,偏振依赖介质的特点是在频域中对于水平和垂直偏振入射光束呈现孤立的PIT现象。PIT超材料的传输响应通过太赫兹时域光谱进行表征,与严格的数值模拟结果显示出良好的一致性。本文所展示的工作为激发和调制PIT响应提供了一种独特的方法,有助于开发非偏振依赖和偏振依赖的慢光构建模块、超灵敏传感器以及在太赫兹波段工作的窄带滤波器。

相似文献

1
Tailoring the plasmon-induced transparency resonances in terahertz metamaterials.
Opt Express. 2017 Aug 21;25(17):19844-19855. doi: 10.1364/OE.25.019844.
2
Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial.
Opt Express. 2017 May 1;25(9):10484-10493. doi: 10.1364/OE.25.010484.
3
Broadband plasmon induced transparency in terahertz metamaterials.
Nanotechnology. 2013 May 31;24(21):214003. doi: 10.1088/0957-4484/24/21/214003. Epub 2013 Apr 25.
5
Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
Opt Express. 2010 Jun 7;18(12):12421-9. doi: 10.1364/OE.18.012421.
6
Modulating Fundamental Resonance in Capacitive Coupled Asymmetric Terahertz Metamaterials.
Sci Rep. 2018 Nov 13;8(1):16773. doi: 10.1038/s41598-018-34942-2.
7
Dynamical electric and magnetic metamaterial response at terahertz frequencies.
Phys Rev Lett. 2006 Mar 17;96(10):107401. doi: 10.1103/PhysRevLett.96.107401. Epub 2006 Mar 13.
8
Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial.
Nanoscale. 2018 Nov 7;10(41):19517-19523. doi: 10.1039/c8nr03564d. Epub 2018 Oct 15.
9
Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface.
Nanomaterials (Basel). 2019 Mar 6;9(3):385. doi: 10.3390/nano9030385.
10
Manipulating the plasmon-induced transparency in terahertz metamaterials.
Opt Express. 2011 Apr 25;19(9):8912-9. doi: 10.1364/OE.19.008912.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验