Suppr超能文献

糖基化的H和Pi副产物影响钙稳态,并通过TMEM165和XPR1的同源物从高尔基体复合体中回收。

H and Pi Byproducts of Glycosylation Affect Ca Homeostasis and Are Retrieved from the Golgi Complex by Homologs of TMEM165 and XPR1.

作者信息

Snyder Nathan A, Stefan Christopher P, Soroudi Camille T, Kim Adam, Evangelista Carlos, Cunningham Kyle W

机构信息

Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218.

Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218

出版信息

G3 (Bethesda). 2017 Dec 4;7(12):3913-3924. doi: 10.1534/g3.117.300339.

Abstract

Glycosylation reactions in the Golgi complex and the endoplasmic reticulum utilize nucleotide sugars as donors and produce inorganic phosphate (Pi) and acid (H) as byproducts. Here we show that homologs of mammalian XPR1 and TMEM165 (termed Erd1 and Gdt1) recycle luminal Pi and exchange luminal H for cytoplasmic Ca, respectively, thereby promoting growth of yeast cells in low Pi and low Ca environments. As expected for reversible H/Ca exchangers, Gdt1 also promoted growth in high Ca environments when the Golgi-localized V-ATPase was operational but had the opposite effect when the V-ATPase was eliminated. Gdt1 activities were negatively regulated by calcineurin signaling and by Erd1, which recycled the Pi byproduct of glycosylation reactions and prevented the loss of this nutrient to the environment via exocytosis. Thus, Erd1 transports Pi in the opposite direction from XPR1 and other EXS family proteins and facilitates byproduct removal from the Golgi complex together with Gdt1.

摘要

高尔基体复合体和内质网中的糖基化反应利用核苷酸糖作为供体,并产生无机磷酸(Pi)和酸(H)作为副产物。在这里,我们表明哺乳动物XPR1和TMEM165的同源物(分别称为Erd1和Gdt1)分别回收腔内的Pi并将腔内的H与细胞质中的Ca交换,从而促进酵母细胞在低Pi和低Ca环境中的生长。正如对可逆H/Ca交换器的预期,当高尔基体定位的V-ATP酶起作用时,Gdt1也促进了在高Ca环境中的生长,但当V-ATP酶被消除时则产生相反的效果。Gdt1的活性受到钙调磷酸酶信号传导和Erd1的负调控,Erd1回收糖基化反应的Pi副产物,并通过胞吐作用防止这种营养物质流失到环境中。因此,Erd1与XPR1和其他EXS家族蛋白在相反方向运输Pi,并与Gdt1一起促进从高尔基体复合体中去除副产物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09d3/5714488/c03ef7636e00/3913f1.jpg

相似文献

2
The yeast protein Gdt1p transports Mn ions and thereby regulates manganese homeostasis in the Golgi.
J Biol Chem. 2018 May 25;293(21):8048-8055. doi: 10.1074/jbc.RA118.002324. Epub 2018 Apr 9.
4
A complex genetic interaction implicates that phospholipid asymmetry and phosphate homeostasis regulate Golgi functions.
PLoS One. 2020 Jul 30;15(7):e0236520. doi: 10.1371/journal.pone.0236520. eCollection 2020.
5
Evidence for splice transcript variants of TMEM165, a gene involved in CDG.
Biochim Biophys Acta Gen Subj. 2017 Apr;1861(4):737-748. doi: 10.1016/j.bbagen.2017.01.011. Epub 2017 Jan 11.
10
Investigating the function of Gdt1p in yeast Golgi glycosylation.
Biochim Biophys Acta Gen Subj. 2018 Mar;1862(3):394-402. doi: 10.1016/j.bbagen.2017.11.006. Epub 2017 Nov 3.

引用本文的文献

2
Understanding brain calcification via N-terminal acetylation at the Golgi apparatus.
Brain. 2025 Sep 3;148(9):3085-3094. doi: 10.1093/brain/awaf175.
4
New insights into the pathogenicity of TMEM165 variants using structural modeling based on AlphaFold 2 predictions.
Comput Struct Biotechnol J. 2023 Jun 17;21:3424-3436. doi: 10.1016/j.csbj.2023.06.015. eCollection 2023.
5
cis-Golgi phosphate transporters harboring an EXS domain are essential for plant growth and development.
Plant Physiol. 2023 May 31;192(2):1000-1015. doi: 10.1093/plphys/kiad123.
6
Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes.
Biol Rev Camb Philos Soc. 2022 Apr;97(2):732-748. doi: 10.1111/brv.12820. Epub 2021 Dec 6.
8
Clinical implication of xenotropic and polytropic retrovirus receptor 1 in papillary thyroid carcinoma.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2021 Feb 25;50(1):90-96. doi: 10.3724/zdxbyxb-2021-0052.
10
Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained Through the INPHORS Signaling Pathway.
Front Microbiol. 2020 Jul 14;11:1367. doi: 10.3389/fmicb.2020.01367. eCollection 2020.

本文引用的文献

1
Evidence for splice transcript variants of TMEM165, a gene involved in CDG.
Biochim Biophys Acta Gen Subj. 2017 Apr;1861(4):737-748. doi: 10.1016/j.bbagen.2017.01.011. Epub 2017 Jan 11.
2
Sexual pheromone modulates the frequency of cytosolic Ca bursts in .
Mol Biol Cell. 2017 Feb 15;28(4):501-510. doi: 10.1091/mbc.E16-07-0481. Epub 2016 Dec 28.
4
TRP-Na(+)/Ca(2+) Exchanger Coupling.
Adv Exp Med Biol. 2016;898:67-85. doi: 10.1007/978-3-319-26974-0_4.
5
Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains.
Science. 2016 May 20;352(6288):986-90. doi: 10.1126/science.aad9858. Epub 2016 Apr 14.
7
Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in Golgi manganese homeostasis.
Hum Mol Genet. 2016 Apr 15;25(8):1489-500. doi: 10.1093/hmg/ddw026. Epub 2016 Feb 1.
8
Inorganic Phosphate and Sulfate Transport in S. cerevisiae.
Adv Exp Med Biol. 2016;892:253-269. doi: 10.1007/978-3-319-25304-6_10.
9
Proton Transport and pH Control in Fungi.
Adv Exp Med Biol. 2016;892:33-68. doi: 10.1007/978-3-319-25304-6_3.
10
The EXS Domain of PHO1 Participates in the Response of Shoots to Phosphate Deficiency via a Root-to-Shoot Signal.
Plant Physiol. 2016 Jan;170(1):385-400. doi: 10.1104/pp.15.00975. Epub 2015 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验