Suppr超能文献

基于离散条纹累积的左减右方法用于离散条纹传感器的精确共相位调整

Dispersed-fringe-accumulation-based left-subtract-right method for fine co-phasing of a dispersed fringe sensor.

作者信息

Li Yang, Wang Shengqian, Rao Changhui

出版信息

Appl Opt. 2017 May 20;56(15):4267-4273. doi: 10.1364/AO.56.004267.

Abstract

In this paper, a dispersed-fringe-accumulation (DFA)-based left-subtract-right (LSR) piston estimation method (DFA-LSR), in which the dispersed fringe image is accumulated in the dispersed direction, and then the LSR method is used to estimate the piston error, is proposed for dispersed fringe sensors (DFS) in the fine co-phasing stage. The DFS is usually used to detect the piston errors (optical path difference) between different segmented mirrors or synthetic aperture telescopes. The DFA-LSR makes up for the shortcomings of the main peak position (MPP) method, which suffers from the constant offset in the pixel counts. The analysis and experiment results show that the proposed method can keep relatively better performance even at the condition of poor signal-to-noise ratio, compared with the MPP method in fine co-phasing stage.

摘要

本文针对处于精细共相阶段的色散条纹传感器(DFS),提出了一种基于色散条纹累积(DFA)的左减右(LSR)活塞误差估计方法(DFA-LSR)。该方法先在色散方向上累积色散条纹图像,然后采用LSR方法估计活塞误差。DFS通常用于检测不同分段镜或合成孔径望远镜之间的活塞误差(光程差)。DFA-LSR弥补了主峰位置(MPP)方法的不足,MPP方法在像素计数中存在恒定偏移。分析和实验结果表明,在精细共相阶段,与MPP方法相比,该方法即使在信噪比不佳的情况下也能保持相对较好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验