He A, Deepan B, Quan C
Appl Opt. 2017 Sep 1;56(25):7217-7224. doi: 10.1364/AO.56.007217.
A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.
正则化相位跟踪器(RPT)是解调单闭合条纹图案的一种有效方法。然而,计算时间长、专门设计的扫描策略以及由噪声和鞍点引起的符号模糊问题降低了其有效性,特别是在解调大型复杂条纹图案时。本文提出了一种基于简化抛物面相位模型的正则化相位跟踪器(SPRPT)。在SPRPT中,一阶和二阶相位导数分别通过密度 - 方向组合方法和离散高阶解调算法预先确定。因此,成本函数得到有效简化,显著减少了计算时间。此外,预先确定的相位导数提高了闭合复杂条纹图案解调的鲁棒性。因此,无需专门设计扫描策略;尽管如此,它对符号模糊问题具有鲁棒性。抛物面相位模型还确保了更好的精度和抗噪声鲁棒性。使用模拟条纹图案和实验条纹图案(通过电子散斑图案干涉术获得)来验证所提出的方法,并将所提出的方法与现有的RPT方法进行比较。仿真结果表明,所提出的方法在计算时间更少的情况下实现了最高精度。实验结果证明了所提出的方法在解调噪声条纹图案方面的鲁棒性和准确性及其在静态和动态应用中的可行性。