Yang Guowei, You Shengzui, Bi Meihua, Fan Bing, Lu Yang, Zhou Xuefang, Li Jing, Geng Hujun, Wang Tianshu
Appl Opt. 2017 Sep 10;56(26):7474-7483. doi: 10.1364/AO.56.007474.
Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated ΓΓ random variables (RVs).
利用调制后向反射器(MRR)的自由空间光(FSO)通信是在传统光收发器与反射光信号的半无源MRR单元之间传输信息的一种创新方式。反射信号在双程信道中会经历湍流引起的衰落,这与传统单程FSO信道中的衰落有很大不同。在本文中,我们将角锥反射器(CCR)视为MRR中的后向反射器件。基于光线追踪方法建立了CCR的通用几何模型,以描述CCR内部的光线轨迹。该光线追踪模型可以处理光束以二面角误差和表面不平度斜入射到CCR斜边表面的一般情况。然后,我们将这个通用的CCR模型集成到波动光学(WO)模拟中,以构建双程光束传播模拟。这种双程模拟包括从收发器通过大气向前传播到MRR、CCR的后向反射以及从MRR到收发器的向后传播,它们可以分别通过一次单程WO模拟、光线追踪CCR模型和另一次单程WO模拟来实现。为了验证所提出的CCR模型和双程WO模拟,分析了CCR在收发器平面上的有效反射面积、增量相位和反射光斑,数值结果与先前发表的结果一致。最后,我们使用双程WO模拟来研究MRR FSO系统中的双程信道。从模拟数据中获得了前向和后向信道中湍流引起的衰落直方图,并通过伽马-伽马(ΓΓ)分布进行拟合。由于两个相反的信道高度相关,我们用两个相关的ΓΓ随机变量(RV)的乘积来对双程信道衰落进行建模。