Suppr超能文献

通过原子层沉积法合成的用于乙烯加氢的UiO-66负载镍催化剂中活性位点的尺寸效应

Size Effect of the Active Sites in UiO-66-Supported Nickel Catalysts Synthesized via Atomic Layer Deposition for Ethylene Hydrogenation.

作者信息

Li Zhanyong, Peters Aaron W, Liu Jian, Zhang Xuan, Schweitzer Neil M, Hupp Joseph T, Farha Omar K

机构信息

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

出版信息

Inorg Chem Front. 2017 May 1;4(5):820-824. doi: 10.1039/C7QI00056A. Epub 2017 Mar 9.

Abstract

Ni(II) ions have been deposited on the Zr nodes of a metal-organic framework (MOF), UiO-66, via an ALD-like process (ALD = atomic layer deposition). By varying the number of ALD cycles, three Ni-decorated UiO-66 materials were synthesized. A suite of physical methods has been used to characterize these materials, indicating structural and high-surface-area features of the parent MOF are retained. Elemental analysis via X-ray photoelectron spectroscopy (XPS) indicates that the anchored Ni ions are mainly on surface and near-surface MOF defect sites. Upon activation, all three materials are catalytic for ethylene hydrogenation, but their catalytic activities significantly vary, with the largest clusters displaying the highest per-nickel-atom activity. The study highlights the ease and effectiveness ALD in MOFs (AIM) for synthesizing, specifically, UiO-66-supported NiO catalysts.

摘要

通过类似原子层沉积(ALD = 原子层沉积)的过程,将镍(II)离子沉积在金属有机框架(MOF)UiO - 66的锆节点上。通过改变ALD循环次数,合成了三种镍修饰的UiO - 66材料。使用了一系列物理方法对这些材料进行表征,表明母体MOF的结构和高表面积特征得以保留。通过X射线光电子能谱(XPS)进行的元素分析表明,锚定的镍离子主要位于MOF的表面和近表面缺陷位点。活化后,所有三种材料都对乙烯加氢具有催化活性,但它们的催化活性差异很大,最大的团簇显示出最高的每镍原子活性。该研究突出了MOF中的原子层沉积(AIM)在合成特定的UiO - 66负载的NiO催化剂方面的简便性和有效性。

相似文献

2
Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework.
J Am Chem Soc. 2016 Feb 17;138(6):1977-82. doi: 10.1021/jacs.5b12515. Epub 2016 Feb 2.
5
Toward Inexpensive Photocatalytic Hydrogen Evolution: A Nickel Sulfide Catalyst Supported on a High-Stability Metal-Organic Framework.
ACS Appl Mater Interfaces. 2016 Aug 17;8(32):20675-81. doi: 10.1021/acsami.6b04729. Epub 2016 Aug 3.
6
Beyond the Active Site: Tuning the Activity and Selectivity of a Metal-Organic Framework-Supported Ni Catalyst for Ethylene Dimerization.
J Am Chem Soc. 2018 Sep 12;140(36):11174-11178. doi: 10.1021/jacs.8b06006. Epub 2018 Aug 30.
7
Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.
Angew Chem Int Ed Engl. 2018 Jan 22;57(4):909-913. doi: 10.1002/anie.201708092. Epub 2018 Jan 2.
8
Reversible Low-Temperature Metal Node Distortion during Atomic Layer Deposition of AlO and TiO on UiO-66-NH Metal-Organic Framework Crystal Surfaces.
ACS Appl Mater Interfaces. 2017 Jul 5;9(26):22042-22054. doi: 10.1021/acsami.7b05214. Epub 2017 Jun 26.

引用本文的文献

1
Node Modification of Metal-Organic Frameworks for Catalytic Applications.
ChemistryOpen. 2025 Jul;14(7):e202400428. doi: 10.1002/open.202400428. Epub 2025 Feb 26.
3
Modification Effects of B₂O₃ on The Structure and Catalytic Activity of WO₃-UiO-66 Catalyst.
Nanomaterials (Basel). 2018 Sep 30;8(10):781. doi: 10.3390/nano8100781.

本文引用的文献

1
Metal-Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature.
ACS Cent Sci. 2017 Jan 25;3(1):31-38. doi: 10.1021/acscentsci.6b00290. Epub 2016 Nov 30.
2
Stable Metal-Organic Framework-Supported Niobium Catalysts.
Inorg Chem. 2016 Nov 21;55(22):11954-11961. doi: 10.1021/acs.inorgchem.6b02103. Epub 2016 Oct 31.
3
An Exceptionally Stable Metal-Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation.
J Am Chem Soc. 2016 Nov 9;138(44):14720-14726. doi: 10.1021/jacs.6b08898. Epub 2016 Oct 25.
4
Regioselective Atomic Layer Deposition in Metal-Organic Frameworks Directed by Dispersion Interactions.
J Am Chem Soc. 2016 Oct 19;138(41):13513-13516. doi: 10.1021/jacs.6b08711. Epub 2016 Oct 10.
6
Toward Inexpensive Photocatalytic Hydrogen Evolution: A Nickel Sulfide Catalyst Supported on a High-Stability Metal-Organic Framework.
ACS Appl Mater Interfaces. 2016 Aug 17;8(32):20675-81. doi: 10.1021/acsami.6b04729. Epub 2016 Aug 3.
7
Structural Transitions of the Metal-Oxide Nodes within Metal-Organic Frameworks: On the Local Structures of NU-1000 and UiO-66.
J Am Chem Soc. 2016 Mar 30;138(12):4178-85. doi: 10.1021/jacs.6b00069. Epub 2016 Mar 15.
8
Zr-based metal-organic frameworks: design, synthesis, structure, and applications.
Chem Soc Rev. 2016 Apr 21;45(8):2327-67. doi: 10.1039/c5cs00837a. Epub 2016 Feb 17.
9
Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework.
J Am Chem Soc. 2016 Feb 17;138(6):1977-82. doi: 10.1021/jacs.5b12515. Epub 2016 Feb 2.
10
Single-Site Organozirconium Catalyst Embedded in a Metal-Organic Framework.
J Am Chem Soc. 2015 Dec 23;137(50):15680-3. doi: 10.1021/jacs.5b11350. Epub 2015 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验