Suppr超能文献

丽蝇蛹集金小蜂通过双相、部分等距的脑体大小缩放和选择性神经纤维适应突破哈勒法则。

Nasonia Parasitic Wasps Escape from Haller's Rule by Diphasic, Partially Isometric Brain-Body Size Scaling and Selective Neuropil Adaptations.

作者信息

Groothuis Jitte, Smid Hans M

机构信息

Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.

出版信息

Brain Behav Evol. 2017;90(3):243-254. doi: 10.1159/000480421. Epub 2017 Oct 24.

Abstract

Haller's rule states that brains scale allometrically with body size in all animals, meaning that relative brain size increases with decreasing body size. This rule applies both on inter- and intraspecific comparisons. Only 1 species, the extremely small parasitic wasp Trichogramma evanescens, is known as an exception and shows an isometric brain-body size relation in an intraspecific comparison between differently sized individuals. Here, we investigated if such an isometric brain-body size relationship also occurs in an intraspecific comparison with a slightly larger parasitic wasp, Nasonia vitripennis, a species that may vary 10-fold in body weight upon differences in levels of scramble competition during larval development. We show that Nasonia exhibits diphasic brain-body size scaling: larger wasps scale allometrically, following Haller's rule, whereas the smallest wasps show isometric scaling. Brains of smaller wasps are, therefore, smaller than expected and we hypothesized that this may lead to adaptations in brain architecture. Volumetric analysis of neuropil composition revealed that wasps of different sizes differed in relative volume of multiple neuropils. The optic lobes and mushroom bodies in particular were smaller in the smallest wasps. Furthermore, smaller brains had a relatively smaller total neuropil volume and larger cellular rind than large brains. These changes in relative brain size and brain architecture suggest that the energetic constraints on brain tissue outweigh specific cognitive requirements in small Nasonia wasps.

摘要

哈勒法则指出,在所有动物中,大脑与身体大小呈异速生长比例关系,这意味着相对脑容量会随着身体尺寸的减小而增加。该法则适用于种间和种内比较。只有1个物种,即极小的寄生蜂赤眼蜂,被认为是个例外,在不同大小个体的种内比较中,其脑体大小呈现等比例关系。在此,我们研究了在与稍大的寄生蜂丽蝇蛹集金小蜂的种内比较中,是否也会出现这种脑体大小的等比例关系。丽蝇蛹集金小蜂在幼虫发育期间,由于争夺竞争程度的差异,体重可能相差10倍。我们发现,丽蝇蛹集金小蜂呈现双相脑体大小比例关系:较大的黄蜂遵循哈勒法则,呈异速生长比例关系,而最小的黄蜂则呈现等比例关系。因此,较小黄蜂的大脑比预期的要小,我们推测这可能导致大脑结构的适应性变化。对神经纤维网组成的体积分析表明,不同大小的黄蜂在多个神经纤维网的相对体积上存在差异。特别是最小的黄蜂的视叶和蘑菇体较小。此外,较小的大脑与较大的大脑相比,其总的神经纤维网体积相对较小,而细胞外皮较大。相对脑容量和大脑结构的这些变化表明,对于小型丽蝇蛹集金小蜂而言,脑组织的能量限制超过了特定的认知需求。

相似文献

2
How to escape from Haller's rule: Olfactory system complexity in small and large Trichogramma evanescens parasitic wasps.
J Comp Neurol. 2016 Jun 15;524(9):1876-91. doi: 10.1002/cne.23927. Epub 2015 Nov 24.
3
Breaking Haller's rule: brain-body size isometry in a minute parasitic wasp.
Brain Behav Evol. 2013;81(2):86-92. doi: 10.1159/000345945. Epub 2013 Jan 26.
4
Effects of Isometric Brain-Body Size Scaling on the Complexity of Monoaminergic Neurons in a Minute Parasitic Wasp.
Brain Behav Evol. 2017;89(3):185-194. doi: 10.1159/000468974. Epub 2017 May 6.
5
The Jewel Wasp Standard Brain: Average shape atlas and morphology of the female Nasonia vitripennis brain.
Arthropod Struct Dev. 2019 Jul;51:41-51. doi: 10.1016/j.asd.2019.100878. Epub 2019 Aug 13.
6
No gains for bigger brains: Functional and neuroanatomical consequences of relative brain size in a parasitic wasp.
J Evol Biol. 2019 Jul;32(7):694-705. doi: 10.1111/jeb.13450. Epub 2019 Apr 13.
7
Species- and size-related differences in dopamine-like immunoreactive clusters in the brain of Nasonia vitripennis and N. giraulti.
Cell Tissue Res. 2020 Feb;379(2):261-273. doi: 10.1007/s00441-019-03079-7. Epub 2019 Aug 22.
8
Brain structure differences between solitary and social wasp species are independent of body size allometry.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019 Dec;205(6):911-916. doi: 10.1007/s00359-019-01374-w. Epub 2019 Nov 8.
9
Constant neuropilar ratio in the insect brain.
Sci Rep. 2020 Dec 8;10(1):21426. doi: 10.1038/s41598-020-78599-2.

引用本文的文献

2
Structure of the Brain of the Smallest Coleoptera.
Dokl Biochem Biophys. 2022 Aug;505(1):166-169. doi: 10.1134/S1607672922040068. Epub 2022 Aug 29.
3
White Paper: An Integrated Perspective on the Causes of Hypometric Metabolic Scaling in Animals.
Integr Comp Biol. 2022 Aug 6;62(5):1395-418. doi: 10.1093/icb/icac136.
4
5
Behavioral performance and division of labor influence brain mosaicism in the leafcutter ant Atta cephalotes.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Mar;208(2):325-344. doi: 10.1007/s00359-021-01539-6. Epub 2022 Feb 3.
6
A of Effects of Environment on Brain Size in Insects.
Insects. 2021 May 17;12(5):461. doi: 10.3390/insects12050461.
7
Insects Provide Unique Systems to Investigate How Early-Life Experience Alters the Brain and Behavior.
Front Behav Neurosci. 2021 Apr 21;15:660464. doi: 10.3389/fnbeh.2021.660464. eCollection 2021.
8
Brain Size, Metabolism, and Social Evolution.
Front Physiol. 2021 Feb 23;12:612865. doi: 10.3389/fphys.2021.612865. eCollection 2021.
9
Brain morphology predicts social intelligence in wild cleaner fish.
Nat Commun. 2020 Dec 21;11(1):6423. doi: 10.1038/s41467-020-20130-2.
10
Constant neuropilar ratio in the insect brain.
Sci Rep. 2020 Dec 8;10(1):21426. doi: 10.1038/s41598-020-78599-2.

本文引用的文献

1
Development and evolution of brain allometry in wasps (Vespidae): size, ecology and sociality.
Curr Opin Insect Sci. 2017 Aug;22:54-61. doi: 10.1016/j.cois.2017.05.014. Epub 2017 May 22.
2
Behavioral Performance and Neural Systems Are Robust to Sensory Injury in Workers of the Ant Pheidole dentata.
Brain Behav Evol. 2017;89(3):195-208. doi: 10.1159/000470899. Epub 2017 May 16.
3
Effects of Isometric Brain-Body Size Scaling on the Complexity of Monoaminergic Neurons in a Minute Parasitic Wasp.
Brain Behav Evol. 2017;89(3):185-194. doi: 10.1159/000468974. Epub 2017 May 6.
4
Ordinary least squares regression is indicated for studies of allometry.
J Evol Biol. 2017 Jan;30(1):4-12. doi: 10.1111/jeb.12986. Epub 2016 Oct 21.
6
Into the black and back: the ecology of brain investment in Neotropical army ants (Formicidae: Dorylinae).
Naturwissenschaften. 2016 Apr;103(3-4):31. doi: 10.1007/s00114-016-1353-4. Epub 2016 Mar 8.
7
Dissection of the complex genetic basis of craniofacial anomalies using haploid genetics and interspecies hybrids in Nasonia wasps.
Dev Biol. 2016 Jul 15;415(2):391-405. doi: 10.1016/j.ydbio.2015.12.022. Epub 2015 Dec 23.
8
How to escape from Haller's rule: Olfactory system complexity in small and large Trichogramma evanescens parasitic wasps.
J Comp Neurol. 2016 Jun 15;524(9):1876-91. doi: 10.1002/cne.23927. Epub 2015 Nov 24.
9
Decoding odor quality and intensity in the Drosophila brain.
Elife. 2014 Dec 16;3:e04147. doi: 10.7554/eLife.04147.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验