Suppr超能文献

针对具有中心圆盘半径和同心环宽度的非侵入性三极同心环电极得出的概念验证拉普拉斯估计值。

Proof of concept Laplacian estimate derived for noninvasive tripolar concentric ring electrode with incorporated radius of the central disc and the widths of the concentric rings.

作者信息

Makeyev Oleksandr, Lee Colin, Besio Walter G

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:841-844. doi: 10.1109/EMBC.2017.8036955.

Abstract

Tripolar concentric ring electrodes are showing great promise in a range of applications including braincomputer interface and seizure onset detection due to their superiority to conventional disc electrodes, in particular, in accuracy of surface Laplacian estimation. Recently, we proposed a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2n. This approach has been used to introduce novel multipolar and variable inter-ring distances concentric ring electrode configurations verified using finite element method. The obtained results suggest their potential to improve Laplacian estimation compared to currently used constant interring distances tripolar concentric ring electrodes. One of the main limitations of the proposed (4n + 1)-point method is that the radius of the central disc and the widths of the concentric rings are not included and therefore cannot be optimized. This study incorporates these two parameters by representing the central disc and both concentric rings as clusters of points with specific radius and widths respectively as opposed to the currently used single point and concentric circles. A proof of concept Laplacian estimate is derived for a tripolar concentric ring electrode with non-negligible radius of the central disc and non-negligible widths of the concentric rings clearly demonstrating how both of these parameters can be incorporated into the (4n + 1)-point method.

摘要

三极同心环电极由于其相对于传统圆盘电极的优越性,特别是在表面拉普拉斯估计的准确性方面,在包括脑机接口和癫痫发作起始检测在内的一系列应用中显示出巨大的前景。最近,我们提出了一种通用方法,用于使用(4n + 1)点法估计具有n个环的(n + 1)极电极的拉普拉斯,其中n≥2,该方法允许消除所有高达2n阶的截断项。这种方法已被用于引入新颖的多极和可变环间距同心环电极配置,并通过有限元方法进行了验证。获得的结果表明,与目前使用的恒定环间距三极同心环电极相比,它们具有改善拉普拉斯估计的潜力。所提出的(4n + 1)点法的一个主要限制是,中心圆盘的半径和同心环的宽度未被纳入,因此无法进行优化。本研究通过将中心圆盘和两个同心环分别表示为具有特定半径和宽度的点簇,而不是目前使用的单点和同心圆,纳入了这两个参数。针对具有不可忽略的中心圆盘半径和不可忽略的同心环宽度的三极同心环电极,推导了概念验证拉普拉斯估计,清楚地展示了如何将这两个参数都纳入(4n + 1)点法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验