Suppr超能文献

一种用于模拟早产儿拔管前呼吸模式的半马尔可夫链方法。

A semi-Markov chain approach to modeling respiratory patterns prior to extubation in preterm infants.

作者信息

Onu Charles C, Kanbar Lara J, Shalish Wissam, Brown Karen A, Sant'Anna Guilherme M, Kearney Robert E, Precup Doina

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2022-2026. doi: 10.1109/EMBC.2017.8037249.

Abstract

After birth, extremely preterm infants often require specialized respiratory management in the form of invasive mechanical ventilation (IMV). Protracted IMV is associated with detrimental outcomes and morbidities. Premature extubation, on the other hand, would necessitate reintubation which is risky, technically challenging and could further lead to lung injury or disease. We present an approach to modeling respiratory patterns of infants who succeeded extubation and those who required reintubation which relies on Markov models. We compare the use of traditional Markov chains to semi-Markov models which emphasize cross-pattern transitions and timing information, and to multi-chain Markov models which can concisely represent non-stationarity in respiratory behavior over time. The models we developed expose specific, unique similarities as well as vital differences between the two populations.

摘要

出生后,极早产儿通常需要有创机械通气(IMV)形式的专门呼吸管理。长时间的IMV与不良后果和发病率相关。另一方面,过早拔管将需要再次插管,这具有风险、技术挑战性大,并且可能进一步导致肺损伤或疾病。我们提出了一种基于马尔可夫模型的方法,用于对成功拔管的婴儿和需要再次插管的婴儿的呼吸模式进行建模。我们比较了传统马尔可夫链与强调跨模式转换和时间信息的半马尔可夫模型,以及能够简洁地表示呼吸行为随时间的非平稳性的多链马尔可夫模型。我们开发的模型揭示了这两类人群之间具体、独特的相似之处以及重要差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验