Hong Kwangseok, Li Min, Nourian Zahra, Meininger Gerald A, Hill Michael A
From the Department of Medical Pharmacology and Physiology (K.H., M.L., G.A.M., M.A.H.) and Dalton Cardiovascular Research Center (K.H., Z.N., G.A.M., M.A.H.), University of Missouri, Columbia; and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville (K.H.).
Hypertension. 2017 Dec;70(6):1264-1272. doi: 10.1161/HYPERTENSIONAHA.117.09757. Epub 2017 Oct 23.
Studies suggest that arteriolar pressure-induced vasoconstriction can be initiated by GPCRs (G protein-coupled receptors), including the ATR (angiotensin II type 1 receptor). This raises the question, are such mechanisms regulated by negative feedback? The present studies examined whether RGS (regulators of G protein signaling) proteins in vascular smooth muscle cells are colocalized with the ATR when activated by mechanical stress or angiotensin II and whether this modulates ATR-mediated vasoconstriction. To determine whether activation of the ATR recruits RGS5, an in situ proximity ligation assay was performed in primary cultures of cremaster muscle arteriolar vascular smooth muscle cells treated with angiotensin II or hypotonic solution in the absence or presence of candesartan (an ATR blocker). Proximity ligation assay results revealed a concentration-dependent increase in trafficking/translocation of RGS5 toward the activated ATR, which was attenuated by candesartan. In intact arterioles, knockdown of RGS5 enhanced constriction to angiotensin II and augmented myogenic responses to increased intraluminal pressure. Myogenic constriction was attenuated to a higher degree by candesartan in RGS5 siRNA-transfected arterioles, consistent with RGS5 contributing to downregulation of ATR-mediated signaling. Further, translocation of RGS5 was impaired in vascular smooth muscle cells of spontaneously hypertensive rats. This is consistent with dysregulated (RGS5-mediated) ATR signaling that could contribute to excessive vasoconstriction in hypertension. In intact vessels, candesartan reduced myogenic vasoconstriction to a greater extent in spontaneously hypertensive rats compared with controls. Collectively, these findings suggest that ATR activation results in translocation of RGS5 toward the plasma membrane, limiting ATR-mediated vasoconstriction through its role in G protein-dependent signaling.
研究表明,小动脉压力诱导的血管收缩可由GPCRs(G蛋白偶联受体)引发,包括1型血管紧张素II受体(ATR)。这就引出了一个问题,即此类机制是否受负反馈调节?本研究检测了血管平滑肌细胞中的RGS(G蛋白信号调节剂)蛋白在受到机械应激或血管紧张素II激活时是否与ATR共定位,以及这是否会调节ATR介导的血管收缩。为了确定ATR的激活是否会募集RGS5,在用血管紧张素II或低渗溶液处理的提睾肌小动脉血管平滑肌细胞原代培养物中,在有无坎地沙坦(一种ATR阻滞剂)的情况下进行了原位邻近连接分析。邻近连接分析结果显示,RGS5向激活的ATR的转运/易位呈浓度依赖性增加,而坎地沙坦可使其减弱。在完整的小动脉中,敲低RGS5可增强对血管紧张素II的收缩反应,并增强对管腔内压力升高的肌源性反应。在RGS5 siRNA转染的小动脉中,坎地沙坦对肌源性收缩的减弱程度更高,这与RGS5有助于下调ATR介导的信号传导一致。此外,自发性高血压大鼠血管平滑肌细胞中RGS5的易位受损。这与(RGS5介导的)ATR信号失调一致,后者可能导致高血压时过度的血管收缩。在完整血管中,与对照组相比,坎地沙坦在自发性高血压大鼠中更大程度地降低了肌源性血管收缩。总的来说,这些发现表明,ATR激活导致RGS5向质膜易位,通过其在G蛋白依赖性信号传导中的作用限制ATR介导的血管收缩。