Suppr超能文献

氧化应激:对遗传性线粒体疾病和帕金森病的机制性见解

Oxidative Stress: Mechanistic Insights into Inherited Mitochondrial Disorders and Parkinson's Disease.

作者信息

Al Shahrani Mesfer, Heales Simon, Hargreaves Iain, Orford Michael

机构信息

Neurometabolic Unit. National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.

Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK.

出版信息

J Clin Med. 2017 Oct 27;6(11):100. doi: 10.3390/jcm6110100.

Abstract

Oxidative stress arises when cellular antioxidant defences become overwhelmed by a surplus generation of reactive oxygen species (ROS). Once this occurs, many cellular biomolecules such as DNA, lipids, and proteins become susceptible to free radical-induced oxidative damage, and this may consequently lead to cellular and ultimately tissue and organ dysfunction. Mitochondria, as well as being a source of ROS, are vulnerable to oxidative stress-induced damage with a number of key biomolecules being the target of oxidative damage by free radicals, including membrane phospholipids, respiratory chain complexes, proteins, and mitochondrial DNA (mt DNA). As a result, a deficit in cellular energy status may occur along with increased electron leakage and partial reduction of oxygen. This in turn may lead to a further increase in ROS production. Oxidative damage to certain mitochondrial biomolecules has been associated with, and implicated in the pathophysiology of a number of diseases. It is the purpose of this review to discuss the impact of such oxidative stress and subsequent damage by reviewing our current knowledge of the pathophysiology of several inherited mitochondrial disorders together with our understanding of perturbations observed in the more commonly acquired neurodegenerative disorders such as Parkinson's disease (PD). Furthermore, the potential use and feasibility of antioxidant therapies as an adjunct to lower the accumulation of damaging oxidative species and hence slow disease progression will also be discussed.

摘要

当细胞抗氧化防御系统被过量产生的活性氧(ROS)压倒时,就会产生氧化应激。一旦发生这种情况,许多细胞生物分子,如DNA、脂质和蛋白质,就会容易受到自由基诱导的氧化损伤,这可能最终导致细胞功能障碍,进而导致组织和器官功能障碍。线粒体不仅是ROS的来源,也容易受到氧化应激诱导的损伤,许多关键生物分子都是自由基氧化损伤的目标,包括膜磷脂、呼吸链复合物、蛋白质和线粒体DNA(mt DNA)。结果,细胞能量状态可能会出现不足,同时电子泄漏增加,氧气部分还原。这反过来可能导致ROS产生进一步增加。对某些线粒体生物分子的氧化损伤与多种疾病的病理生理学有关,并在其中起作用。本综述的目的是通过回顾我们目前对几种遗传性线粒体疾病病理生理学的认识,以及我们对在更常见的获得性神经退行性疾病如帕金森病(PD)中观察到的扰动的理解,来讨论这种氧化应激及其后续损伤的影响。此外,还将讨论抗氧化疗法作为辅助手段降低损伤性氧化物质积累从而减缓疾病进展的潜在用途和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dd6/5704117/d7d378d675a1/jcm-06-00100-g001.jpg

相似文献

3
Oxidative Stress: A Key Modulator in Neurodegenerative Diseases.
Molecules. 2019 Apr 22;24(8):1583. doi: 10.3390/molecules24081583.
4
Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight.
Biomed Pharmacother. 2015 Aug;74:101-10. doi: 10.1016/j.biopha.2015.07.025. Epub 2015 Aug 7.
5
6
Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia.
J Neurol Sci. 2005 Jun 15;233(1-2):145-62. doi: 10.1016/j.jns.2005.03.012.
7
Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function.
Ann N Y Acad Sci. 1998 Nov 20;854:155-70. doi: 10.1111/j.1749-6632.1998.tb09899.x.
10
Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders.
Neurol Res. 2017 Jan;39(1):73-82. doi: 10.1080/01616412.2016.1251711. Epub 2016 Nov 3.

引用本文的文献

2
Mosses in Urban Environments as Passive Biofilters and Organisms Impacted by Asbestos-Contaminated Habitats.
Int J Environ Res Public Health. 2025 May 26;22(6):838. doi: 10.3390/ijerph22060838.
5
Neuroprotective Effects of Olive Oil: A Comprehensive Review of Antioxidant Properties.
Antioxidants (Basel). 2024 Jun 24;13(7):762. doi: 10.3390/antiox13070762.
6
A pilot study of mitochondrial response to an in vivo prosthetic joint Staphylococcus aureus infection model.
J Orthop Res. 2024 Mar;42(3):539-546. doi: 10.1002/jor.25696. Epub 2023 Oct 17.
8
Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review.
Food Chem (Oxf). 2022 Dec 13;6:100155. doi: 10.1016/j.fochms.2022.100155. eCollection 2023 Jul 30.
9
DNA methylation at hepatitis B virus integrants and flanking host mitochondrially encoded cytochrome C oxidase III.
Oncol Lett. 2022 Oct 11;24(6):424. doi: 10.3892/ol.2022.13544. eCollection 2022 Dec.
10
Secretome as neuropathology-targeted intervention of Parkinson's disease.
Regen Ther. 2022 Aug 28;21:288-293. doi: 10.1016/j.reth.2022.08.003. eCollection 2022 Dec.

本文引用的文献

1
'Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia'.
Cell Death Dis. 2016 May 26;7(5):e2237. doi: 10.1038/cddis.2016.111.
3
Drug-Induced Mitochondrial Toxicity.
Drug Saf. 2016 Jul;39(7):661-74. doi: 10.1007/s40264-016-0417-x.
5
Oxidative stress in inherited mitochondrial diseases.
Free Radic Biol Med. 2015 Nov;88(Pt A):10-7. doi: 10.1016/j.freeradbiomed.2015.05.039. Epub 2015 Jun 12.
6
Oxidative stress and the homeodynamics of iron metabolism.
Biomolecules. 2015 May 11;5(2):808-47. doi: 10.3390/biom5020808.
7
Cardiolipin is a key determinant for mtDNA stability and segregation during mitochondrial stress.
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):587-98. doi: 10.1016/j.bbabio.2015.03.007. Epub 2015 Apr 2.
8
Therapeutic strategies for mitochondrial disorders.
Pediatr Neurol. 2015 Mar;52(3):302-13. doi: 10.1016/j.pediatrneurol.2014.06.023. Epub 2014 Nov 15.
9
Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier?
J Bioenerg Biomembr. 2015 Apr;47(1-2):111-8. doi: 10.1007/s10863-014-9571-y. Epub 2014 Sep 28.
10
Melatonin prevents mitochondrial dysfunction and insulin resistance in rat skeletal muscle.
J Pineal Res. 2014 Sep;57(2):155-67. doi: 10.1111/jpi.12157. Epub 2014 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验