Li Cheng, Lesnik Keaton Larson, Liu Hong
Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, USA.
Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, USA.
Bioelectrochemistry. 2018 Feb;119:220-226. doi: 10.1016/j.bioelechem.2017.10.006. Epub 2017 Oct 19.
Extracellular electron transfer between syntrophic partners needs to be efficiently maintained in methanogenic environments. Direct extracellular electron transfer via electrical current is an alternative to indirect hydrogen transfer but requires construction of conductive extracellular structures. Conductive mechanisms and relationship between conductivity and the community composition in mixed-species methanogenic biofilms are not well understood. The present study investigated conductive behaviors of methanogenic biofilms and examined the correlation between biofilm conductivity and community composition between different anaerobic biofilms enriched from the same inoculum. Highest conductivity observed in methanogenic biofilms was 71.8±4.0μS/cm. Peak-manner response of conductivity upon changes over a range of electrochemical potentials suggests that electron transfer in methanogenic biofilms occurs through redox driven super-exchange. The strong correlation observed between biofilm conductivity and Geobacter spp. in the metabolically diverse anaerobic communities suggests that the efficiency of DEET may provide pressure for microbial communities to select for species that can produce electrical conduits.
在产甲烷环境中,互营伙伴之间的细胞外电子转移需要得到有效维持。通过电流进行的直接细胞外电子转移是间接氢转移的一种替代方式,但需要构建导电的细胞外结构。混合物种产甲烷生物膜中的导电机制以及导电性与群落组成之间的关系尚不清楚。本研究调查了产甲烷生物膜的导电行为,并检验了从同一接种物富集的不同厌氧生物膜之间生物膜导电性与群落组成的相关性。在产甲烷生物膜中观察到的最高电导率为71.8±4.0μS/cm。在一系列电化学电位变化时电导率的峰值响应表明,产甲烷生物膜中的电子转移是通过氧化还原驱动的超交换发生的。在代谢多样的厌氧群落中,生物膜导电性与地杆菌属之间观察到的强相关性表明,直接细胞外电子转移(DEET)的效率可能为微生物群落选择能够产生导电通道的物种提供压力。