Suppr超能文献

新型弓形虫抑制剂化学类型。

Novel Toxoplasma gondii inhibitor chemotypes.

作者信息

Sanford A G, Schulze T T, Potluri L P, Hemsley R M, Larson J J, Judge A K, Zach S J, Wang X, Charman S A, Vennerstrom J L, Davis P H

机构信息

Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA.

College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA.

出版信息

Parasitol Int. 2018 Apr;67(2):107-111. doi: 10.1016/j.parint.2017.10.010. Epub 2018 Jan 4.

Abstract

We profiled three novel T. gondii inhibitors identified from an antimalarial phenotypic high throughput screen (HTS) campaign: styryl 4-oxo-1,3-benzoxazin-4-one KG3, tetrahydrobenzo[b]pyran KG7, and benzoquinone hydrazone KG8. These compounds inhibit T. gondii in vitro with IC values ranging from 0.3 to 2μM, comparable to that of 0.25 to 1.5μM for the control drug pyrimethamine. KG3 had no measurable cytotoxicity against five mammalian cell lines, whereas KG7 and KG8 inhibited the growth of 2 of 5 cell lines with KG8 being the least selective for T. gondii. None of the compounds were mutagenic in an Ames assay. Experimental gLogD and calculated PSA values for the three compounds were well within the ranges predicted to be favorable for good ADME, even though each compound had relatively low aqueous solubility. All three compounds were metabolically unstable, especially KG3 and KG7. Multiple IP doses of 5mg/kg KG7 and KG8 increased survival in a T. gondii mouse model. Despite their liabilities, we suggest that these compounds are useful starting points for chemical prospecting, scaffold-hopping, and optimization.

摘要

我们分析了从抗疟表型高通量筛选(HTS)活动中鉴定出的三种新型弓形虫抑制剂:苯乙烯基4-氧代-1,3-苯并恶嗪-4-酮KG3、四氢苯并[b]吡喃KG7和苯醌腙KG8。这些化合物在体外抑制弓形虫,IC值范围为0.3至2μM,与对照药物乙胺嘧啶的0.25至1.5μM相当。KG3对五种哺乳动物细胞系没有可测量的细胞毒性,而KG7和KG8抑制了5种细胞系中的2种细胞系的生长,其中KG8对弓形虫的选择性最低。在艾姆斯试验中,这些化合物均无致突变性。尽管每种化合物的水溶性相对较低,但这三种化合物的实验性gLogD和计算出的PSA值均完全在预测有利于良好吸收、分布、代谢和排泄(ADME)的范围内。所有三种化合物在代谢上都不稳定,尤其是KG3和KG7。多次腹腔注射5mg/kg的KG7和KG8可提高弓形虫小鼠模型的存活率。尽管它们存在不足之处,但我们认为这些化合物是化学勘探、骨架跳跃和优化的有用起点。

相似文献

1
Novel Toxoplasma gondii inhibitor chemotypes.
Parasitol Int. 2018 Apr;67(2):107-111. doi: 10.1016/j.parint.2017.10.010. Epub 2018 Jan 4.
2
Derivatives of a benzoquinone acyl hydrazone with activity against Toxoplasma gondii.
Int J Parasitol Drugs Drug Resist. 2018 Dec;8(3):488-492. doi: 10.1016/j.ijpddr.2018.11.001. Epub 2018 Nov 10.
3
Identification of compounds that suppress Toxoplasma gondii tachyzoites and bradyzoites.
PLoS One. 2017 Jun 13;12(6):e0178203. doi: 10.1371/journal.pone.0178203. eCollection 2017.
5
Identification of fungal natural products with potent inhibition in .
Microbiol Spectr. 2024 Apr 2;12(4):e0414223. doi: 10.1128/spectrum.04142-23. Epub 2024 Feb 29.
7
Novel triazine JPC-2067-B inhibits Toxoplasma gondii in vitro and in vivo.
PLoS Negl Trop Dis. 2008 Mar 5;2(3):e190. doi: 10.1371/journal.pntd.0000190.
8
Efficacy of antiretroviral compounds against Toxoplasma gondii in vitro.
Int J Antimicrob Agents. 2019 Dec;54(6):814-819. doi: 10.1016/j.ijantimicag.2019.08.023. Epub 2019 Aug 31.
10
Recent progress on anti-Toxoplasma drugs discovery: Design, synthesis and screening.
Eur J Med Chem. 2019 Dec 1;183:111711. doi: 10.1016/j.ejmech.2019.111711. Epub 2019 Sep 19.

引用本文的文献

1
Antimalarial Dibenzannulated Medium-Ring Keto Lactams.
ACS Infect Dis. 2023 Oct 13;9(10):1964-1980. doi: 10.1021/acsinfecdis.3c00245. Epub 2023 Sep 11.
2
Quercetin inhibits Toxoplasma gondii tachyzoite proliferation and acts synergically with azithromycin.
Parasit Vectors. 2023 Aug 3;16(1):261. doi: 10.1186/s13071-023-05849-3.
3
Anti-Toxoplasma gondii activity of Trametes versicolor (Turkey tail) mushroom extract.
Sci Rep. 2023 May 29;13(1):8667. doi: 10.1038/s41598-023-35676-6.
4
Neurological and Neurobehavioral Disorders Associated with Infection in Humans.
J Parasitol Res. 2021 Oct 19;2021:6634807. doi: 10.1155/2021/6634807. eCollection 2021.
5
Analogs of Marinopyrrole A Show Enhancement to Observed Potency against Acute Toxoplasma gondii Infection.
Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0079421. doi: 10.1128/AAC.00794-21. Epub 2021 Oct 18.
6
Diaryl Ureas as an Antiprotozoal Chemotype.
ACS Infect Dis. 2021 Jun 11;7(6):1578-1583. doi: 10.1021/acsinfecdis.1c00135. Epub 2021 May 10.
8
Structure-Activity Relationship of Antischistosomal Ozonide Carboxylic Acids.
J Med Chem. 2020 Apr 9;63(7):3723-3736. doi: 10.1021/acs.jmedchem.0c00069. Epub 2020 Mar 19.
9
A new chemotype with promise against Trypanosoma cruzi.
Bioorg Med Chem Lett. 2020 Jan 1;30(1):126778. doi: 10.1016/j.bmcl.2019.126778. Epub 2019 Oct 31.
10
Derivatives of a benzoquinone acyl hydrazone with activity against Toxoplasma gondii.
Int J Parasitol Drugs Drug Resist. 2018 Dec;8(3):488-492. doi: 10.1016/j.ijpddr.2018.11.001. Epub 2018 Nov 10.

本文引用的文献

1
Detection of Intestinal Pathogens in River, Shore, and Drinking Water in Lima, Peru.
J Genomics. 2017 Jan 17;5:4-11. doi: 10.7150/jgen.18378. eCollection 2017.
2
Review of Experimental Compounds Demonstrating Anti-Toxoplasma Activity.
Antimicrob Agents Chemother. 2016 Nov 21;60(12):7017-7034. doi: 10.1128/AAC.01176-16. Print 2016 Dec.
3
Clinically Available Medicines Demonstrating Anti-Toxoplasma Activity.
Antimicrob Agents Chemother. 2015 Dec;59(12):7161-9. doi: 10.1128/AAC.02009-15. Epub 2015 Sep 21.
5
Metabolically Stable tert-Butyl Replacement.
ACS Med Chem Lett. 2013 Apr 22;4(6):514-6. doi: 10.1021/ml400045j. eCollection 2013 Jun 13.
6
Toxoplasmosis--a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries.
PLoS One. 2014 Mar 24;9(3):e90203. doi: 10.1371/journal.pone.0090203. eCollection 2014.
7
8
Toxoplasma on the brain: understanding host-pathogen interactions in chronic CNS infection.
J Parasitol Res. 2012;2012:589295. doi: 10.1155/2012/589295. Epub 2012 Mar 22.
9
Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses.
Cell Host Microbe. 2010 Aug 19;8(2):208-18. doi: 10.1016/j.chom.2010.07.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验