Suppr超能文献

高通量可重现的自动化蛋白质组学样品制备工作流程用于定量质谱分析。

Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.

机构信息

Advanced Clinical Biosystems Institute, Heart Institute, Cedars Sinai Medical Center , Los Angeles, California 90048, United States.

Beckman Coulter Life Sciences, Indianapolis, Indiana 46268, United States.

出版信息

J Proteome Res. 2018 Jan 5;17(1):420-428. doi: 10.1021/acs.jproteome.7b00623. Epub 2017 Nov 10.

Abstract

Sample preparation for protein quantification by mass spectrometry requires multiple processing steps including denaturation, reduction, alkylation, protease digestion, and peptide cleanup. Scaling these procedures for the analysis of numerous complex biological samples can be tedious and time-consuming, as there are many liquid transfer steps and timed reactions where technical variations can be introduced and propagated. We established an automated sample preparation workflow with a total processing time for 96 samples of 5 h, including a 2 h incubation with trypsin. Peptide cleanup is accomplished by online diversion during the LC/MS/MS analysis. In a selected reaction monitoring (SRM) assay targeting 6 plasma biomarkers and spiked β-galactosidase, mean intraday and interday cyclic voltammograms (CVs) for 5 serum and 5 plasma samples over 5 days were <20%. In a highly multiplexed SRM assay targeting more than 70 proteins, 90% of the transitions from 6 plasma samples repeated on 3 separate days had total CVs below 20%. Similar results were obtained when the workflow was transferred to a second site: 93% of peptides had CVs below 20%. An automated trypsin digestion workflow yields uniformly processed samples in less than 5 h. Reproducible quantification of peptides was observed across replicates, days, instruments, and laboratory sites, demonstrating the broad applicability of this approach.

摘要

用于质谱法蛋白质定量的样品制备需要多个处理步骤,包括变性、还原、烷基化、蛋白酶消化和肽净化。对于分析众多复杂的生物样品,扩展这些程序可能会很繁琐和耗时,因为有许多液体转移步骤和定时反应,其中可能会引入和传播技术差异。我们建立了一个自动化的样品制备工作流程,96 个样品的总处理时间为 5 小时,其中包括 2 小时与胰蛋白酶孵育。肽净化是通过 LC/MS/MS 分析过程中的在线分流来完成的。在针对 6 种血浆生物标志物和β-半乳糖苷酶的靶向选择反应监测(SRM)测定中,5 个血清和 5 个血浆样本的日内和日间循环伏安图(CV)的平均值<20%,持续 5 天。在针对 70 多种蛋白质的高度多重化 SRM 测定中,6 个血浆样本在 3 个不同天重复的 90%的跃迁的总 CV 低于 20%。当工作流程转移到第二个地点时,也得到了类似的结果:93%的肽的 CV<20%。自动化胰蛋白酶消化工作流程可在不到 5 小时内均匀处理样品。在重复、天数、仪器和实验室地点都观察到肽的可重复定量,证明了这种方法的广泛适用性。

相似文献

1
Highly Reproducible Automated Proteomics Sample Preparation Workflow for Quantitative Mass Spectrometry.
J Proteome Res. 2018 Jan 5;17(1):420-428. doi: 10.1021/acs.jproteome.7b00623. Epub 2017 Nov 10.
2
Automated "Cells-To-Peptides" Sample Preparation Workflow for High-Throughput, Quantitative Proteomic Assays of Microbes.
J Proteome Res. 2019 Oct 4;18(10):3752-3761. doi: 10.1021/acs.jproteome.9b00455. Epub 2019 Aug 30.
3
High precision quantification of human plasma proteins using the automated SISCAPA Immuno-MS workflow.
N Biotechnol. 2016 Sep 25;33(5 Pt A):494-502. doi: 10.1016/j.nbt.2015.12.008. Epub 2016 Jan 6.
5
Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis.
Mass Spectrom Rev. 2023 Mar;42(2):873-886. doi: 10.1002/mas.21750. Epub 2021 Nov 16.
6
Immunosuppressant therapeutic drug monitoring by LC-MS/MS: workflow optimization through automated processing of whole blood samples.
Clin Biochem. 2013 Nov;46(16-17):1723-7. doi: 10.1016/j.clinbiochem.2013.08.013. Epub 2013 Sep 5.
9
A robotic protocol for high-throughput processing of samples for selected reaction monitoring assays.
Proteomics. 2017 Mar;17(6). doi: 10.1002/pmic.201600339. Epub 2016 Dec 23.
10
Cost-Effective Automated Preparation of Serum Samples for Reproducible Quantitative Clinical Proteomics.
J Proteome Res. 2019 May 3;18(5):2337-2345. doi: 10.1021/acs.jproteome.9b00023. Epub 2019 Apr 22.

引用本文的文献

1
Development of an Adaptive, Economical, and Easy-to-Use SP3-TMT Automated Sample Preparation Workflow for Quantitative Proteomics.
J Proteome Res. 2025 Jun 6;24(6):2996-3006. doi: 10.1021/acs.jproteome.5c00124. Epub 2025 May 27.
2
A targeted LC MS/MS assay of a health surveillance panel and its application to chronic kidney disease.
bioRxiv. 2025 Mar 16:2025.03.14.643399. doi: 10.1101/2025.03.14.643399.
5
Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry.
ACS Meas Sci Au. 2024 Jun 4;4(4):338-417. doi: 10.1021/acsmeasuresciau.3c00068. eCollection 2024 Aug 21.
6
Establishing Quality Control Metrics for Large-Scale Plasma Proteomic Sample Preparation.
ACS Meas Sci Au. 2024 Apr 29;4(4):442-451. doi: 10.1021/acsmeasuresciau.3c00070. eCollection 2024 Aug 21.
7
A proximity proteomics pipeline with improved reproducibility and throughput.
Mol Syst Biol. 2024 Aug;20(8):952-971. doi: 10.1038/s44320-024-00049-2. Epub 2024 Jul 1.
8
Identifying novel biomarkers using proteomics to predict cancer-associated thrombosis.
Bleeding Thromb Vasc Biol. 2024;3(Suppl 1). doi: 10.4081/btvb.2024.120. Epub 2024 May 16.
9
Instrumentation at the Leading Edge of Proteomics.
Anal Chem. 2024 May 21;96(20):7976-8010. doi: 10.1021/acs.analchem.3c04497. Epub 2024 May 13.
10
The Future of Proteomics is Up in the Air: Can Ion Mobility Replace Liquid Chromatography for High Throughput Proteomics?
J Proteome Res. 2024 Jun 7;23(6):1871-1882. doi: 10.1021/acs.jproteome.4c00248. Epub 2024 May 7.

本文引用的文献

1
An Empirical Approach to Signature Peptide Choice for Selected Reaction Monitoring: Quantification of Uromodulin in Urine.
Clin Chem. 2016 Jan;62(1):198-207. doi: 10.1373/clinchem.2015.242495. Epub 2015 Nov 20.
3
CLSI C62-A: A New Standard for Clinical Mass Spectrometry.
Clin Chem. 2016 Jan;62(1):24-9. doi: 10.1373/clinchem.2015.238626. Epub 2015 Oct 1.
4
Impact of automation on mass spectrometry.
Clin Chim Acta. 2015 Oct 23;450:298-303. doi: 10.1016/j.cca.2015.08.027. Epub 2015 Sep 2.
5
Big biomedical data as the key resource for discovery science.
J Am Med Inform Assoc. 2015 Nov;22(6):1126-31. doi: 10.1093/jamia/ocv077. Epub 2015 Jul 21.
6
Simultaneous Quantification of Viral Antigen Expression Kinetics Using Data-Independent (DIA) Mass Spectrometry.
Mol Cell Proteomics. 2015 May;14(5):1361-72. doi: 10.1074/mcp.M114.047373. Epub 2015 Mar 9.
7
Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications.
Proteomics Clin Appl. 2015 Apr;9(3-4):307-21. doi: 10.1002/prca.201400117. Epub 2015 Feb 23.
9
From lost in translation to paradise found: enabling protein biomarker method transfer by mass spectrometry.
Clin Chem. 2014 Jul;60(7):941-4. doi: 10.1373/clinchem.2014.224840. Epub 2014 May 8.
10
Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins.
Nat Methods. 2014 Feb;11(2):149-55. doi: 10.1038/nmeth.2763. Epub 2013 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验