文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

蛋白质冠:对纳米颗粒与肺细胞相互作用的影响。

Protein corona: implications for nanoparticle interactions with pulmonary cells.

机构信息

Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.

Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA.

出版信息

Part Fibre Toxicol. 2017 Oct 30;14(1):42. doi: 10.1186/s12989-017-0223-3.


DOI:10.1186/s12989-017-0223-3
PMID:29084556
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5663074/
Abstract

BACKGROUND: We previously showed that cerium oxide (CeO), barium sulfate (BaSO) and zinc oxide (ZnO) nanoparticles (NPs) exhibited different lung toxicity and pulmonary clearance in rats. We hypothesize that these NPs acquire coronas with different protein compositions that may influence their clearance from the lungs. METHODS: CeO, silica-coated CeO, BaSO, and ZnO NPs were incubated in rat lung lining fluid in vitro. Then, gel electrophoresis followed by quantitative mass spectrometry was used to characterize the adsorbed proteins stripped from these NPs. We also measured uptake of instilled NPs by alveolar macrophages (AMs) in rat lungs using electron microscopy. Finally, we tested whether coating of gold NPs with albumin would alter their lung clearance in rats. RESULTS: We found that the amounts of nine proteins in the coronas formed on the four NPs varied significantly. The amounts of albumin, transferrin and α-1 antitrypsin were greater in the coronas of BaSO and ZnO than that of the two CeO NPs. The uptake of BaSO in AMs was less than CeO and silica-coated CeO NPs. No identifiable ZnO NPs were observed in AMs. Gold NPs coated with albumin or citrate instilled into the lungs of rats acquired the similar protein coronas and were cleared from the lungs to the same extent. CONCLUSIONS: We show that different NPs variably adsorb proteins from the lung lining fluid. The amount of albumin in the NP corona varies as does NP uptake by AMs. However, albumin coating does not affect the translocation of gold NPs across the air-blood barrier. A more extensive database of corona composition of a diverse NP library will develop a platform to help predict the effects and biokinetics of inhaled NPs.

摘要

背景:我们之前的研究表明,氧化铈(CeO)、硫酸钡(BaSO)和氧化锌(ZnO)纳米颗粒(NPs)在大鼠体内表现出不同的肺毒性和肺清除率。我们假设这些 NPs 获得了具有不同蛋白质组成的冠状物,这可能会影响它们从肺部的清除。

方法:CeO、硅涂层 CeO、BaSO 和 ZnO NPs 在体外与大鼠肺衬液孵育。然后,通过凝胶电泳和定量质谱法来表征从这些 NPs 上剥离的吸附蛋白。我们还使用电子显微镜测量了肺泡巨噬细胞(AMs)摄取肺部滴注的 NPs。最后,我们测试了金 NPs 用白蛋白涂层是否会改变它们在大鼠体内的肺清除率。

结果:我们发现,四种 NPs 冠状物形成的 9 种蛋白质的量差异很大。BaSO 和 ZnO 的冠状物中白蛋白、转铁蛋白和α-1 抗胰蛋白酶的量比两种 CeO NPs 多。AMs 摄取 BaSO 的量比 CeO 和硅涂层 CeO NPs 少。AMs 中未观察到可识别的 ZnO NPs。用白蛋白或柠檬酸盐涂层的金 NPs 注入大鼠肺部后,获得了相似的蛋白质冠状物,并以相同的程度从肺部清除。

结论:我们表明,不同的 NPs 从肺衬液中吸附蛋白质的方式不同。NP 冠状物中白蛋白的量以及 AMs 摄取 NP 的量都有所不同。然而,白蛋白涂层不会影响金 NPs 穿过气-血屏障的转移。一个更广泛的 NP 库的冠状物组成数据库将为预测吸入 NPs 的作用和生物动力学提供一个平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/6b090f78f5b3/12989_2017_223_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/529b4882daef/12989_2017_223_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/b5153bfc258a/12989_2017_223_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/622e9576791e/12989_2017_223_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/59dcd9fcf69c/12989_2017_223_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/bfa0ec0ea271/12989_2017_223_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/5af9f87f05f6/12989_2017_223_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/6b090f78f5b3/12989_2017_223_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/529b4882daef/12989_2017_223_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/b5153bfc258a/12989_2017_223_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/622e9576791e/12989_2017_223_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/59dcd9fcf69c/12989_2017_223_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/bfa0ec0ea271/12989_2017_223_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/5af9f87f05f6/12989_2017_223_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0a1/5663074/6b090f78f5b3/12989_2017_223_Fig7_HTML.jpg

相似文献

[1]
Protein corona: implications for nanoparticle interactions with pulmonary cells.

Part Fibre Toxicol. 2017-10-30

[2]
Pulmonary fate and consequences of transferrin-functionalized gold nanoparticles.

Nanotheranostics. 2021

[3]
Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation.

Nanotoxicology. 2016-8

[4]
Silica coating influences the corona and biokinetics of cerium oxide nanoparticles.

Part Fibre Toxicol. 2015-10-12

[5]
Effects of metal oxide nanoparticles on the structure and activity of lysozyme.

Colloids Surf B Biointerfaces. 2017-3-1

[6]
Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats.

Part Fibre Toxicol. 2017-7-12

[7]
Toxicity of ZnO nanoparticles (NPs) with or without hydrophobic surface coating to THP-1 macrophages: interactions with BSA or oleate-BSA.

Toxicol Mech Methods. 2018-5-16

[8]
Fate of Barium Sulfate Nanoparticles Deposited in the Lungs of Rats.

Sci Rep. 2019-6-3

[9]
Polymer-coated nanoparticle protein corona formation potentiates phagocytosis of bacteria by innate immune cells and inhibits coagulation in human plasma.

Biointerphases. 2020-9-21

[10]
Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials.

Part Fibre Toxicol. 2014-4-4

引用本文的文献

[1]
The Protein Corona Paradox: Challenges in Achieving True Biomimetics in Nanomedicines.

Biomimetics (Basel). 2025-4-29

[2]
Nanomedicine Innovations for Lung Cancer Diagnosis and Therapy.

ACS Appl Mater Interfaces. 2025-3-5

[3]
Deciphering key nano-bio interface descriptors to predict nanoparticle-induced lung fibrosis.

Part Fibre Toxicol. 2025-1-14

[4]
Understanding the role of biomolecular coronas in human exposure to nanomaterials.

Environ Sci Nano. 2024-9-9

[5]
Immune response to zinc oxide inhalation in metal fume fever, and the possible role of IL-17f.

Sci Rep. 2023-12-14

[6]
Characterization and Polydispersity of Volcanic Ash Nanoparticles in Synthetic Lung Fluid.

Toxics. 2023-7-19

[7]
Immunomodulatory Effects of Subacute Inhalation Exposure to Copper Oxide Nanoparticles in House Dust Mite-Induced Asthma.

ACS Nano. 2023-8-8

[8]
An In Vitro Dosimetry Tool for the Numerical Transport Modeling of Engineered Nanomaterials Powered by the Enalos RiskGONE Cloud Platform.

Nanomaterials (Basel). 2022-11-8

[9]
Isolation methods for particle protein corona complexes from protein-rich matrices.

Nanoscale Adv. 2020-1-9

[10]
Revealing the pulmonary surfactant corona on silica nanoparticles by cryo-transmission electron microscopy.

Nanoscale Adv. 2020-1-7

本文引用的文献

[1]
The role of natural processes and surface energy of inhaled engineered nanoparticles on aggregation and corona formation.

NanoImpact. 2016-4

[2]
Real-time in situ analysis of biocorona formation and evolution on silica nanoparticles in defined and complex biological environments.

Nanoscale. 2017-3-9

[3]
Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages.

Nanotoxicology. 2016-9

[4]
Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: A case study of toxicological implications from nanomaterials released during consumer use.

NanoImpact. 2016-1

[5]
Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications.

J Hazard Mater. 2016-3-15

[6]
Kinetics of protein adsorption on gold nanoparticle with variable protein structure and nanoparticle size.

J Chem Phys. 2015-10-28

[7]
Silica coating influences the corona and biokinetics of cerium oxide nanoparticles.

Part Fibre Toxicol. 2015-10-12

[8]
Occupational exposure to nanoparticles at commercial photocopy centers.

J Hazard Mater. 2015-6-17

[9]
Biokinetics and effects of barium sulfate nanoparticles.

Part Fibre Toxicol. 2014-10-21

[10]
Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles.

Part Fibre Toxicol. 2014-9-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索