Polanski Jaroslaw, Tkocz Aleksandra, Kucia Urszula
Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006, Katowice, Poland.
J Cheminform. 2017 Sep 11;9(1):49. doi: 10.1186/s13321-017-0236-9.
On the one hand, ligand efficiency (LE) and the binding efficiency index (BEI), which are binding properties (B) averaged versus the heavy atom count (HAC: LE) or molecular weight (MW: BEI), have recently been declared a novel universal tool for drug design. On the other hand, questions have been raised about the mathematical validity of the LE approach.
In fact, neither the critics nor the advocates are precise enough to provide a generally understandable and accepted chemistry of the LE metrics. In particular, this refers to the puzzle of the LE trends for small and large molecules. In this paper, we explain the chemistry and mathematics of the LE type of data. Because LE is a weight metrics related to binding per gram, its hyperbolic decrease with an increasing number of heavy atoms can be easily understood by its 1/MW dependency. Accordingly, we analyzed how this influences the LE trends for ligand-target binding, economic big data or molecular descriptor data. In particular, we compared the trends for the thermodynamic ∆G data of a series of ligands that interact with 14 different target classes, which were extracted from the BindingDB database with the market prices of a commercial compound library of ca. 2.5 mln synthetic building blocks.
An interpretation of LE and BEI that clearly explains the observed trends for these parameters are presented here for the first time. Accordingly, we show that the main misunderstanding of the chemical meaning of the BEI and LE parameters is their interpretation as molecular descriptors that are connected with a single molecule, while binding is a statistical effect in which a population of ligands limits the formation of ligand-receptor complexes. Therefore, LE (BEI) should not be interpreted as a molecular (physicochemical) descriptor that is connected with a single molecule but as a property (binding per gram). Accordingly, the puzzle of the surprising behavior of LE is explained by the 1/MW dependency. This effect clearly explains the hyperbolic LE trend not as a real increase in binding potency but as a physical limitation due to the different population of ligands with different MWs in a 1 g sample available for the formation of ligand-receptor complexes. Graphical abstract .
一方面,配体效率(LE)和结合效率指数(BEI),即结合性质(B)相对于重原子数(HAC:LE)或分子量(MW:BEI)的平均值,最近被宣称是药物设计的一种新型通用工具。另一方面,有人对LE方法的数学有效性提出了质疑。
事实上,批评者和支持者都不够精确,无法提供一种普遍易懂且被接受的LE指标化学解释。特别是,这涉及到小分子和大分子LE趋势的谜题。在本文中,我们解释了LE类型数据的化学和数学原理。由于LE是与每克结合相关的权重指标,其随重原子数增加而呈双曲线下降可以通过其对1/MW的依赖性很容易理解。因此,我们分析了这如何影响配体 - 靶点结合、经济大数据或分子描述符数据的LE趋势。特别是,我们比较了一系列与14种不同靶点类别相互作用的配体的热力学∆G数据趋势,这些数据是从BindingDB数据库中提取的,并与约250万个合成构建块的商业化合物库的市场价格进行了比较。
本文首次提出了对LE和BEI的一种解释,该解释清楚地说明了这些参数所观察到的趋势。因此,我们表明,对BEI和LE参数化学意义的主要误解在于将它们解释为与单个分子相关的分子描述符,而结合是一种统计效应,其中一群配体限制了配体 - 受体复合物的形成。因此,LE(BEI)不应被解释为与单个分子相关的分子(物理化学)描述符,而应被解释为一种性质(每克结合)。相应地,LE令人惊讶行为的谜题通过1/MW依赖性得到了解释。这种效应清楚地解释了双曲线LE趋势,不是因为结合效力的真正增加,而是由于在1克可用于形成配体 - 受体复合物的样品中,具有不同MW的配体群体不同所导致的物理限制。图形摘要 。