National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA.
Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, 43007, Spain.
Nat Commun. 2017 Oct 31;8(1):1222. doi: 10.1038/s41467-017-01295-9.
An ultimate goal in carbon nanoscience is to decipher formation mechanisms of highly ordered systems. Here, we disclose chemical processes that result in formation of high-symmetry clusterfullerenes, which attract interest for use in applications that span biomedicine to molecular electronics. The conversion of doped graphite into a C cage is shown to occur through bottom-up self-assembly reactions. Unlike conventional forms of fullerene, the iconic Buckminsterfullerene cage, I -C, is entirely avoided in the bottom-up formation mechanism to afford synthesis of group 3-based metallic nitride clusterfullerenes. The effects of structural motifs and cluster-cage interactions on formation of compounds in the solvent-extractable C-C region are determined by in situ studies of defined clusterfullerenes under typical synthetic conditions. This work establishes the molecular origin and mechanism that underlie formation of unique carbon cage materials, which may be used as a benchmark to guide future nanocarbon explorations.
碳纳米科学的最终目标是破译高度有序体系的形成机制。在这里,我们揭示了导致高对称性富勒烯形成的化学过程,这些富勒烯因其在从生物医学到分子电子学等多个领域的应用而受到关注。掺杂石墨转化为 C 笼的过程是通过自下而上的自组装反应实现的。与传统形式的富勒烯(如标志性的巴克敏斯特富勒烯笼)不同,在自下而上的形成机制中完全避免了 I-C 笼,从而合成了基于第 3 族的金属氮化物富勒烯。通过在典型合成条件下对定义明确的富勒烯进行原位研究,确定了结构基元和笼-笼相互作用对溶剂萃取的 C-C 区域中化合物形成的影响。这项工作确立了独特碳笼材料形成的分子起源和机制,可作为指导未来纳米碳探索的基准。