Suppr超能文献

界面组装细菌生物膜蛋白 BslA 制备平面液滴、弹性薄片和微胶囊

Flat Drops, Elastic Sheets, and Microcapsules by Interfacial Assembly of a Bacterial Biofilm Protein, BslA.

机构信息

Department of Chemical and Environmental Engineering, ‡Department of Chemistry, §Department of Molecular Biophysics and Biochemistry, ∥Department of Physics, and ⊥The Integrated Graduate Program in Physical and Engineering Biology, Yale University , New Haven, Connecticut 06511, United States.

出版信息

Langmuir. 2017 Nov 28;33(47):13590-13597. doi: 10.1021/acs.langmuir.7b03226. Epub 2017 Nov 15.

Abstract

Protein adsorption and assembly at interfaces provide a potentially versatile route to create useful constructs for fluid compartmentalization. In this context, we consider the interfacial assembly of a bacterial biofilm protein, BslA, at air-water and oil-water interfaces. Densely packed, high modulus monolayers form at air-water interfaces, leading to the formation of flattened sessile water drops. BslA forms elastic sheets at oil-water interfaces, leading to the production of stable monodisperse oil-in-water microcapsules. By contrast, water-in-oil microcapsules are unstable but display arrested rather than full coalescence on contact. The disparity in stability likely originates from a low areal density of BslA hydrophobic caps on the exterior surface of water-in-oil microcapsules, relative to the inverse case. In direct analogy with small molecule surfactants, the lack of stability of individual water-in-oil microcapsules is consistent with the large value of the hydrophilic-lipophilic balance (HLB number) calculated based on the BslA crystal structure. The occurrence of arrested coalescence indicates that the surface activity of BslA is similar to that of colloidal particles that produce Pickering emulsions, with the stability of partially coalesced structures ensured by interfacial jamming. Micropipette aspiration and flow in tapered capillaries experiments reveal intriguing reversible and nonreversible modes of mechanical deformation, respectively. The mechanical robustness of the microcapsules and the ability to engineer their shape and to design highly specific binding responses through protein engineering suggest that these microcapsules may be useful for biomedical applications.

摘要

蛋白质在界面上的吸附和组装为创建用于流体分隔的有用结构提供了一种潜在的多功能途径。在这种情况下,我们考虑了细菌生物膜蛋白 BslA 在气-水和油-水界面上的界面组装。在气-水界面上形成了密集堆积的、高模量的单层,导致扁平的固着水滴的形成。BslA 在油-水界面上形成弹性片,导致稳定的单分散油包水微胶囊的产生。相比之下,水包油微胶囊不稳定,但在接触时显示出停滞而不是完全聚结。这种稳定性的差异可能源于水包油微胶囊外表面上 BslA 疏水性帽的比表面积密度相对较低,与反例相比。与小分子表面活性剂直接类比,根据 BslA 晶体结构计算出的亲水-亲油平衡(HLB 数)较大,表明单个水包油微胶囊的不稳定性。部分聚结结构的界面堵塞确保了停滞聚结的发生,这表明 BslA 的表面活性类似于产生 Pickering 乳液的胶体颗粒。微管吸吮和锥形毛细管内流动实验分别揭示了有趣的可逆和不可逆机械变形模式。微胶囊的机械强度以及通过蛋白质工程设计其形状和设计高度特异性结合反应的能力表明,这些微胶囊可能在生物医学应用中有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验