State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Wuhan 430070, China.
Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States.
ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40488-40496. doi: 10.1021/acsami.7b15651. Epub 2017 Nov 13.
Both n- and p-type lead telluride (PbTe)-based thermoelectric (TE) materials display high TE efficiency, but the low fracture strength may limit their commercial applications. To find ways to improve these macroscopic mechanical properties, we report here the ideal strength and deformation mechanism of PbTe using density functional theory calculations. This provides structure-property relationships at the atomic scale that can be applied to estimate macroscopic mechanical properties such as fracture toughness. Among all the shear and tensile paths that are examined here, we find that the lowest ideal strength of PbTe is 3.46 GPa along the (001)/⟨100⟩ slip system. This leads to an estimated fracture toughness of 0.28 MPa m based on its ideal stress-strain relation, which is in good agreement with our experimental measurement of 0.59 MPa m. We find that softening and breaking of the ionic Pb-Te bond leads to the structural collapse. To improve the mechanical strength of PbTe, we suggest strengthening the structural stiffness of the ionic Pb-Te framework through an alloying strategy, such as alloying PbTe with isotypic PbSe or PbS. This point defect strategy has a great potential to develop high-performance PbTe-based materials with robust mechanical properties, which may also be applied to other materials and applications.
n 型和 p 型碲化铅(PbTe)基热电(TE)材料都显示出较高的 TE 效率,但低断裂强度可能限制其商业应用。为了寻找提高这些宏观力学性能的方法,我们使用密度泛函理论计算报告了 PbTe 的理想强度和变形机制。这提供了原子尺度的结构-性能关系,可用于估计宏观力学性能,如断裂韧性。在所有研究的剪切和拉伸路径中,我们发现 PbTe 的最低理想强度为 3.46 GPa,沿(001)/⟨100⟩滑移系统。这导致根据其理想应力-应变关系估计的断裂韧性为 0.28 MPa m,与我们实验测量的 0.59 MPa m 非常吻合。我们发现,Pb-Te 离子键的软化和断裂导致结构坍塌。为了提高 PbTe 的机械强度,我们建议通过合金化策略(如将 PbTe 与等型 PbSe 或 PbS 合金化)来增强离子 Pb-Te 框架的结构刚度。这种点缺陷策略有可能开发出具有稳健机械性能的高性能 PbTe 基材料,这也可能适用于其他材料和应用。