Suppr超能文献

Effect of alkaline precipitation on Cr species of Cr(III)-bearing complexes typically used in the tannery industry.

作者信息

Wang Dandan, Ye Yuxuan, Liu Hui, Ma Hongrui, Zhang Weiming

机构信息

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.

出版信息

Chemosphere. 2018 Feb;193:42-49. doi: 10.1016/j.chemosphere.2017.11.006. Epub 2017 Nov 3.

Abstract

Various organic compounds extensively used in the leather industry could influence the performance of alkaline precipitation with Cr(III). This study focused on two typical Cr(III)-bearing complexes (Cr(III)-collagen and Cr(III)-citrate) ubiquitous in tannery effluent yet with distinct treatment efficiencies, as Cr(III) was much more difficult to remove in the Cr(III)-citrate solution. Comprehensive analytical methods were employed to explore the intrinsic mechanism. It was found that a lower removal efficiency towards Cr(III) was significantly associated with higher oligomers. The molecular size of the Cr(III)-citrate complex continued to increase with rising pH, making it larger overall than Cr(III)-collagen species. The growing oligomer moiety of dissolved Cr(III)-complex species could persist in the stronger basic pH range, leading to the large amount of residual Cr(III) in the Cr(III)-citrate system. Combining this result with potentiometric titration and X-ray photoelectron spectroscopy data, it was believed that the polymeric species other than monomers facilitated resisting the attack from hydroxide ions, and the postulated Cr(III)-citrate species towards higher oligomers were discovered. Beyond that, both charge neutralization and sweeping effects were presented among the gradually emerging flocs in the Cr(III)-collagen system together with the electric double layer compression effect derived from salinity, thus resulting in a larger floc size and higher Cr(III) removal efficiency in saline solutions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验