Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
Curr Biol. 2017 Nov 20;27(22):3535-3543.e4. doi: 10.1016/j.cub.2017.10.002. Epub 2017 Nov 9.
Profilin is an abundant actin monomer-binding protein with critical actin regulatory roles in vivo [1, 2]. However, profilin also influences microtubule dynamics in cells, which may be mediated in part through its interactions with formins that in turn bind microtubules [3, 4]. Specific residues on human profilin-1 (PFN1) are mutated in patients with amyotrophic lateral sclerosis (ALS) [5, 6]. However, the observation that some ALS-linked PFN1 mutants fail to alter cellular actin organization or dynamics [5-8] or in vitro actin-monomer affinity [9] has been perplexing, given that profilin is best understood as an actin regulator. Here, we investigated direct effects of profilin on microtubule dynamics and whether ALS-linked mutations in PFN1 disrupt such functions. We found that human, fly, and yeast profilin homologs all directly enhance microtubule growth rate by several-fold in vitro. Microtubule stimulatory effects were unaffected by mutations in the canonical actin- or poly-proline-binding sites of profilin. Instead, microtubule activities depended on specific surface residues on profilin mutated in ALS patients. Furthermore, microtubule effects were attenuated by increasing concentrations of actin monomers, suggesting competition between actin and microtubules for binding profilin. Consistent with these biochemical observations, a 2-fold increase in the expression level of wild-type PFN1, but not the ALS-linked PFN1 mutants, increased microtubule growth rates in cells. Together, these results demonstrate that profilin directly enhances the growth rate of microtubules. They further suggest that ALS-linked mutations in PFN1 may perturb cellular microtubule dynamics and/or the coordination between the actin and microtubule cytoskeletons, leading to motor neuron degeneration.
肌动蛋白单体结合蛋白 Profilin 在体内具有重要的肌动蛋白调节作用[1,2]。然而,Profilin 也会影响细胞中的微管动力学,这可能部分是通过与微管结合的formin 相互作用介导的[3,4]。肌萎缩侧索硬化症(ALS)患者的人 Profilin-1(PFN1)的特定残基发生突变[5,6]。然而,一些与 ALS 相关的 PFN1 突变体未能改变细胞内肌动蛋白组织或动力学[5-8]或体外肌动蛋白单体亲和力[9]的观察结果令人困惑,因为 Profilin 被认为是一种肌动蛋白调节剂。在这里,我们研究了 Profilin 对微管动力学的直接影响,以及 PFN1 中的 ALS 相关突变是否破坏了这些功能。我们发现,人类、苍蝇和酵母 Profilin 同源物都在体外以几倍的速度直接增强微管的生长速率。微管刺激作用不受 Profilin 中经典肌动蛋白或多脯氨酸结合位点突变的影响。相反,微管活性取决于在 ALS 患者中突变的 Profilin 上的特定表面残基。此外,微管效应会被增加的肌动蛋白单体浓度减弱,这表明肌动蛋白和微管竞争与 Profilin 结合。与这些生化观察结果一致,野生型 PFN1 的表达水平增加两倍,但与 ALS 相关的 PFN1 突变体没有增加,这增加了细胞中微管的生长速度。总之,这些结果表明 Profilin 直接增强了微管的生长速度。它们进一步表明,PFN1 中的 ALS 相关突变可能会扰乱细胞微管动力学和/或肌动蛋白和微管细胞骨架之间的协调,导致运动神经元退化。