Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100, Israel.
Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, D-24098, Kiel, Germany.
Nat Commun. 2017 Nov 13;8(1):1453. doi: 10.1038/s41467-017-01723-w.
Single-photon ionization is one of the most fundamental light matter interactions in nature, serving as a universal probe of the quantum state of matter. By probing the emitted electron, one can decode the full dynamics of the interaction. When photo-ionization is evolving in the presence of a strong laser field, the fundamental properties of the mechanism can be signicantly altered. Here we demonstrate how the liberated electron can perform a self-probing measurement of such interaction with attosecond precision. Extreme ultraviolet attosecond pulses initiate an electron wavepacket by photo-ionization, a strong infrared field controls its motion, and finally electron-ion collision maps it into re-emission of attosecond radiation bursts. Our measurements resolve the internal clock provided by the self-probing mechanism, obtaining a direct insight into the build-up of photo-ionization in the presence of the strong laser field.
单光子电离是自然界中最基本的光物质相互作用之一,是物质量子态的通用探针。通过探测发射电子,可以解码相互作用的全部动力学。当光致电离在强激光场存在下演化时,机制的基本性质可能会发生显著改变。在这里,我们展示了自由电子如何以阿秒精度对这种相互作用进行自我探测测量。极端紫外阿秒脉冲通过光致电离产生电子波包,强红外场控制其运动,最后电子离子碰撞将其映射到阿秒辐射脉冲的再发射。我们的测量结果解析了自探测机制提供的内部时钟,直接洞察了在强激光场存在下光致电离的建立过程。