Université Lyon 1, CNRS, UMR 5256, Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), 2 avenue Albert Einstein, F-69626, Villeurbanne, France.
Conseil National de la Recherche Scientifique, Commission Libanaise de l'Energie Atomique, Laboratoire d'Analyse des Polluants Organiques, B.P. 11-8281, Riad El Solh, 11072260, Beyrouth, Lebanon.
Environ Sci Pollut Res Int. 2018 Jan;25(3):2651-2663. doi: 10.1007/s11356-017-0629-3. Epub 2017 Nov 13.
Bicarbonate, phosphate, chloride ions, and humic substances are among the constituents most widely present in natural waters. These non-target constituents can greatly affect the efficiency of advanced oxidation processes used for water decontamination due to their capacity to interfere with the adsorption of the target compounds on the surface of TiO, absorb photons, scavenge hydroxyl radicals (·OH), and generate photochemical reactive intermediates. In this work, the effect of these constituents on the degradation of sulfaclozine (SCL) was monitored in three different AOPs systems: UV/TiO, UV/KSO, and UV/TiO/KSO. It was shown that bicarbonate (HCO) and phosphate (HPO) ions enhanced the degradation of SCL in UV/TiO and UV/TiO/KSO systems whereas the addition of humic substances influenced these rates with a much smaller extent. On the other hand, the degradation rate of SCL in the UV/KSO system was not affected by the presence of HCO and HPO but was inhibited in the presence of humic substances. In addition, the different mechanisms that can take place in the presence of these constituents were discussed and the degradation rate enhancement in presence of HCO and HPO was attributed to the formation of new reactive species such as carbonate (CO) and hydroxyl (·OH) radicals activated by TiO holes (h). In the presence of chloride (Cl) and nitrate (NO) ions, an enhancement of SCL adsorption on the surface of TiO was observed. Finally, a comparative study of the degradation of SCL in river water and ultrapure water was reported.
碳酸氢根、磷酸根、氯离子和腐殖质是天然水中最常见的成分。由于这些非目标成分能够干扰目标化合物在 TiO2 表面的吸附、吸收光子、清除羟基自由基 (·OH) 和生成光化学反应性中间体,因此它们会极大地影响用于水净化的高级氧化过程的效率。在这项工作中,监测了这些成分对磺胺氯哒嗪 (SCL) 在三种不同 AOP 系统中的降解的影响:UV/TiO、UV/KSO 和 UV/TiO/KSO。结果表明,碳酸氢根 (HCO) 和磷酸根 (HPO) 离子增强了 UV/TiO 和 UV/TiO/KSO 系统中 SCL 的降解,而腐殖质的添加对这些速率的影响要小得多。另一方面,SCL 在 UV/KSO 系统中的降解速率不受 HCO 和 HPO 的存在影响,但在腐殖质存在下受到抑制。此外,还讨论了这些成分存在时可能发生的不同机制,并将 HCO 和 HPO 存在时的降解速率增强归因于 TiO2 空穴 (h) 激活形成的新反应性物质,如碳酸盐 (CO) 和羟基 (·OH) 自由基。在存在氯离子 (Cl) 和硝酸盐 (NO) 离子的情况下,观察到 SCL 在 TiO2 表面的吸附增强。最后,报道了在河水和超纯水中 SCL 降解的比较研究。