Suppr超能文献

原型复合材料编织支架移植物在周围血管应用中的弯曲疲劳变形机制。

Deformation mechanisms of prototype composite braided stent-grafts in bending fatigue for peripheral artery application.

机构信息

Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, China.

Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, China.

出版信息

J Mech Behav Biomed Mater. 2018 Feb;78:74-81. doi: 10.1016/j.jmbbm.2017.10.037. Epub 2017 Oct 31.

Abstract

Stent-grafts in peripheral arteries suffer from complex cyclic loadings in vivo, including pulsatile, axial bending and torsion. Normal fatigue durability evaluation technologies, however, are majorly based on pulsation and thus are short of accuracy under the complicated stress conditions experienced physiologically. While there is a little research focused on the cyclic fatigue of stent-grafts in bending, it remains an almost total lack of deformation or fatigue mechanisms. In this work, composite braided stent-grafts incorporating Nitinol (NiTi) yarns and polyethylene terephthalate (PET) multifilament yarns were cycled in bending by the self-developed testing system to investigate their deformation behaviors. Deformation mechanisms at the yarn level were discussed, and NiTi yarn crossover structure was considered the primary factor affecting the deformation modes. Four yarn-crossover-based deformation modes (accordion buckling, diamond-shaped buckling, neck propagation and microbuckling) revealed the mechanisms of energy absorption of braided stent-grafts on the mesoscopic scale. Further, mechanical modes were applied to help regulate stent designs.

摘要

外周动脉中的支架移植物在体内会受到复杂的循环载荷,包括脉动、轴向弯曲和扭转。然而,正常的疲劳耐久性评估技术主要基于脉动,因此在生理上经历的复杂应力条件下缺乏准确性。虽然有一些研究集中在弯曲状态下的支架移植物的循环疲劳,但几乎完全缺乏变形或疲劳机制。在这项工作中,采用自行开发的测试系统对包含镍钛(NiTi)纱线和聚对苯二甲酸乙二醇酯(PET)复丝纱线的复合编织支架移植物进行弯曲循环,以研究它们的变形行为。讨论了纱线水平的变形机制,并认为 NiTi 纱线交叉结构是影响变形模式的主要因素。基于四个纱线交叉的变形模式(手风琴式屈曲、菱形屈曲、颈缩传播和微屈曲)揭示了编织支架移植物在介观尺度上的能量吸收机制。此外,机械模式被应用于帮助调节支架设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验