School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
Nanoscale. 2017 Nov 30;9(46):18334-18342. doi: 10.1039/c7nr06448a.
The spin-dependent Seebeck effect (SDSE) is one of the core topics of spin caloritronics. In the traditional device designs of spin-dependent Seebeck rectifiers and diodes, finite spin-dependent band gaps of materials are required to realize the on-off characteristic in thermal spin currents, and nearly zero charge current should be achieved to reduce energy dissipation. Here, we propose that two ferromagnetic zigzag γ-graphyne nanoribbons (ZγGNRs) without any spin-dependent band gaps around the Fermi level can not only exhibit the SDSE, but also display rectifier and diode effects in thermal spin currents characterized by threshold temperatures, which originates from the compensation effect occurring in spin-dependent transmissions but not from the spin-splitting band gaps in materials. The metallic characteristics of ZγGNRs bring about an advantage that the gate voltage is an effective route to adjust the symmetry of spin-splitting bands to obtain pure thermal spin currents. The results provide a new mechanism to realize spin-Seebeck rectifier and diode effects in 2D materials and expand material candidates towards spin-Seebeck device applications.
自旋依赖塞贝克效应(SDSE)是自旋电子热学的核心课题之一。在自旋相关的塞贝克整流器和二极管的传统器件设计中,需要材料具有有限的自旋相关能隙,以实现热自旋流中的开关特性,并且需要实现近零电荷电流以减少能量耗散。在这里,我们提出,两个没有费米能级附近的自旋相关带隙的铁磁锯齿形γ-石墨炔纳米带(ZγGNRs)不仅可以表现出 SDSE,而且可以在以阈值温度为特征的热自旋流中表现出整流和二极管效应,这源于自旋相关透射中的补偿效应,而不是材料中的自旋分裂带隙。ZγGNRs 的金属特性带来了一个优势,即栅极电压是调节自旋分裂能带对称性以获得纯热自旋流的有效途径。该结果为在二维材料中实现自旋塞贝克整流和二极管效应提供了一种新的机制,并扩展了自旋塞贝克器件应用的材料候选。