Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, P. R. China.
Soft Matter. 2017 Dec 6;13(47):8930-8939. doi: 10.1039/c7sm01574g.
From the macro- to the nanoscale, kirigami structures show novel and tunable properties by tailoring the original two-dimensional sheets. In this study, the large stretchability and failure behavior in graphene nanoribbon kirigami (GNR-k) are obtained using the finite element (FE) method and molecular dynamics (MD) simulations. The carbon-carbon bond in the FE method is equivalent to a nonlinear Timoshenko beam based on the Tersoff-Brenner potential. All the results from the present FE method are in reasonable agreement with those from our MD simulations using the REBO potential. These results from the two methods show that the maximum ultimate strain of GNR-k (around 100%) is around 4 times higher than that of a pristine graphene nanoribbon (GNR), whereas the minimum ultimate stress of GNR-k is around one order of magnitude lower than that of the GNR. In particular, the large stretchability of GNR-k is indirectly proven to be mainly derived from the out-of-plane bending deformation by measuring the nonlinear mechanical properties of paper kirigami. Our results provide physical insights into the origins of the large stretchability of GNR-k and make GNR-k applicable to flexible nanodevices.
从宏观到纳米尺度,折纸结构通过对原始二维片进行剪裁,显示出新颖且可调的性质。在这项研究中,使用有限元(FE)方法和分子动力学(MD)模拟获得了石墨烯纳米带折纸(GNR-k)的大拉伸性和失效行为。FE 方法中的碳-碳键等效于基于 Tersoff-Brenner 势能的非线性 Timoshenko 梁。FE 方法的所有结果都与我们使用 REBO 势能的 MD 模拟的结果非常吻合。这两种方法的结果表明,GNR-k 的最大极限应变(约 100%)比原始石墨烯纳米带(GNR)高约 4 倍,而 GNR-k 的最小极限应力比 GNR 低约一个数量级。特别是,通过测量纸折纸的非线性力学性能,间接证明了 GNR-k 的大拉伸性主要源于面外弯曲变形。我们的结果为 GNR-k 的大拉伸性的起源提供了物理见解,并使 GNR-k 适用于柔性纳米器件。