Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.
State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, PR China.
Water Res. 2018 Feb 1;129:231-239. doi: 10.1016/j.watres.2017.11.024. Epub 2017 Nov 9.
Natural organic matter (NOM) is ubiquitous in aqueous systems and dynamically partitions onto/from environmental surfaces. However, such interfacial processes have not been uniformly quantified in situ and in real time. In this work, adsorption and deposition processes of Suwannee River humic acid (SRHA) and Suwannee River fulvic acid (SRFA), as model NOM, were evaluated for a series of environmentally relevant interfaces. Real-time, interfacial phenomenon, including deposition, release, and adlayer viscoelastic properties, were quantified over a variety of water chemistries via quartz crystal microbalance with dissipation monitoring (QCM-D). Specifically, adlayer mass and deposition rates of SRHA and SRFA were evaluated as a function of NOM concentration/molecular weight (fraction), pH, electrolyte composition (type and concentration), and collector surface type. For these, the adsorption of SRHA onto aluminum oxide (AlO) and polystyrene (PS) surfaces follows the Langmuir isotherm model. Rapid, near-monolayer formation of SRHA/SRFA adlayers were observed on AlO, hydroxyapatite (HAP), and poly (l-lysine) (PLL) surfaces, but not on PS or iron oxide (FeO) surfaces. The presence of divalent cations (Ca/Mg) at relatively low concentrations (0.5-5.0 mM) significantly enhances the mass of SRHA/SRFA deposited onto the surfaces of silica (SiO), AlO, and PS. Viscoelastic properties of the adsorbed layer based on the ratio of dissipation to frequency revealed a relatively unique adlayer structure for SRHA in the presence of 5.0 mM Ca.
天然有机物(NOM)在水系统中无处不在,并动态分配到/从环境表面上。然而,这些界面过程尚未在原位和实时条件下得到统一量化。在这项工作中,评估了苏万尼河腐殖酸(SRHA)和苏万尼河富里酸(SRFA)作为模型 NOM 的一系列环境相关界面的吸附和沉积过程。通过石英晶体微天平与耗散监测(QCM-D)实时、定量地评估了包括沉积、释放和吸附加层粘弹性在内的一系列界面现象,这些现象在各种水化学条件下都有所涉及。具体而言,评估了 SRHA 和 SRFA 的吸附加层质量和沉积速率作为 NOM 浓度/分子量(分数)、pH 值、电解质组成(类型和浓度)以及收集器表面类型的函数。对于这些情况,SRHA 在氧化铝(AlO)和聚苯乙烯(PS)表面上的吸附遵循 Langmuir 等温线模型。在 AlO、羟基磷灰石(HAP)和聚(L-赖氨酸)(PLL)表面上观察到 SRHA/SRFA 吸附加层的快速、接近单层形成,但在 PS 或氧化铁(FeO)表面上则没有。在相对较低的浓度(0.5-5.0 mM)下,二价阳离子(Ca/Mg)的存在显著增强了 SRHA/SRFA 沉积到硅(SiO)、AlO 和 PS 表面的质量。基于耗散与频率之比的吸附加层粘弹性特性揭示了在存在 5.0 mM Ca 的情况下,SRHA 具有相对独特的吸附加层结构。