Suppr超能文献

提高宏基因组研究中病毒读段分类学赋值效率。

Increase in taxonomic assignment efficiency of viral reads in metagenomic studies.

机构信息

INRA-Université de Montpellier UMR DGIMI 34095 Montpellier, France.

CIRAD-INRA-Supagro, UMR BGPI, Campus International de Baillarguet, 34398 Montpellier, France.

出版信息

Virus Res. 2018 Jan 15;244:230-234. doi: 10.1016/j.virusres.2017.11.011. Epub 2017 Nov 14.

Abstract

Metagenomics studies have revolutionized the field of biology by revealing the presence of many previously unisolated and uncultured micro-organisms. However, one of the main problems encountered in metagenomic studies is the high percentage of sequences that cannot be assigned taxonomically using commonly used similarity-based approaches (e.g. BLAST or HMM). These unassigned sequences are allegorically called « dark matter » in the metagenomic literature and are often referred to as being derived from new or unknown organisms. Here, based on published and original metagenomic datasets coming from virus-like particle enriched samples, we present and quantify the improvement of viral taxonomic assignment that is achievable with a new similarity-based approach. Indeed, prior to any use of similarity based taxonomic assignment methods, we propose assembling contigs from short reads as is currently routinely done in metagenomic studies, but then to further map unassembled reads to the assembled contigs. This additional mapping step increases significantly the proportions of taxonomically assignable sequence reads from a variety -plant, insect and environmental (estuary, lakes, soil, feces) - of virome studies.

摘要

宏基因组学研究通过揭示许多以前无法分离和培养的微生物的存在,彻底改变了生物学领域。然而,宏基因组学研究中遇到的主要问题之一是,使用常用的基于相似性的方法(例如 BLAST 或 HMM)无法对很大比例的序列进行分类学分配。这些未分配的序列在宏基因组学文献中被比喻为“暗物质”,通常被认为来自新的或未知的生物体。在这里,基于来自病毒样颗粒富集样本的已发表和原始宏基因组数据集,我们提出并量化了新的基于相似性的方法可实现的病毒分类学分配的改进。实际上,在使用任何基于相似性的分类学分配方法之前,我们建议像目前在宏基因组学研究中通常那样,从短读长组装 contigs,但随后将未组装的读长进一步映射到组装的 contigs 上。这种额外的映射步骤大大增加了来自各种病毒组研究(植物、昆虫和环境(河口、湖泊、土壤、粪便))的可分类序列读长的比例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验