Dwivedi Garima, Chevrier Anik, Hoemann Caroline D, Buschmann Michael D
1 Biomedical Engineering Institute, Polytechnique Montreal, Montreal, Quebec, Canada.
2 Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec, Canada.
Cartilage. 2018 Oct;9(4):378-390. doi: 10.1177/1947603517693044. Epub 2017 Feb 15.
Bone marrow stimulation procedures initiate repair by fracturing or drilling subchondral bone at base of cartilaginous defect. Earlier studies have shown that defect location and animal age affect cartilage repair outcome, suggesting a strong influence of structural and biological characteristics of subchondral bone. Here, we analyzed comprehensive biological characteristics of bone marrow progenitor cells (BMPCs) in subchondral bone of young and old rabbit condyle and trochlea. We tested the hypothesis that in vitro biological properties of BMPCs are influenced by location, age of donor and method of their isolation.
In vitro biological properties, including cell yield, colony-forming unit fibroblasts (CFU-f), surface marker expression, and differentiation potential were determined. Comparisons were carried out between trochlea versus condyle and epiphyseal versus metaphyseal bone using old ( N = 5) and young animal knees ( N = 8) to generate collagenase and explant-derived BMPC cultures.
CFU-f, cell yield, expression of stem cell markers, and osteogenic differentiation were significantly superior for younger animals. Trochlear subchondral bone yielded the most progenitors with the highest clonogenic potential and cartilaginous matrix expression. Trochlear collagenase-derived BMPCs had higher clonogenic capacity than explant-derived ones. Epiphyseal cells generated a larger chondrogenic pellet mass than metaphyseal-derived BMPCs. All older pellet cultures and one non-responder young rabbit failed to accumulate glycosaminoglycans (GAGs).
Taken together, these results suggest that properties intrinsic to subchondral progenitors could significantly influence cartilage repair potential, and could partly explain variability in cartilage repair outcomes using same cartilage repair approach.
骨髓刺激程序通过在软骨缺损底部对软骨下骨进行骨折或钻孔来启动修复。早期研究表明,缺损位置和动物年龄会影响软骨修复结果,提示软骨下骨的结构和生物学特性有很大影响。在此,我们分析了年轻和老年兔髁和滑车软骨下骨中骨髓祖细胞(BMPC)的综合生物学特性。我们检验了以下假设:BMPC的体外生物学特性受供体位置、年龄及其分离方法的影响。
测定体外生物学特性,包括细胞产量、集落形成单位成纤维细胞(CFU-f)、表面标志物表达和分化潜能。使用老年(N = 5)和幼年动物膝关节(N = 8),对滑车与髁以及骨骺与干骺端骨之间进行比较,以生成胶原酶和外植体来源的BMPC培养物。
年轻动物的CFU-f、细胞产量、干细胞标志物表达和成骨分化明显更优。滑车软骨下骨产生的祖细胞最多,具有最高的克隆形成潜能和软骨基质表达。滑车胶原酶来源的BMPC比外植体来源的具有更高的克隆形成能力。骨骺细胞产生的软骨形成球团质量比干骺端来源的BMPC更大。所有老年球团培养物和一只无反应的幼年兔均未能积累糖胺聚糖(GAG)。
综上所述,这些结果表明软骨下祖细胞的内在特性可能显著影响软骨修复潜能,并可部分解释使用相同软骨修复方法时软骨修复结果的变异性。