Krotos László, Czakó Gábor
Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged , Rerrich Béla tér 1, Szeged H-6720, Hungary.
J Phys Chem A. 2017 Dec 14;121(49):9415-9420. doi: 10.1021/acs.jpca.7b10226. Epub 2017 Dec 4.
We report a chemically accurate global ab initio full-dimensional potential energy surface (PES) for the Cl(P) + CH reaction improving the high-energy region of our previous PES [Czakó, G.; Bowman, J. M. Science 2011, 334, 343-346]. Besides the abstraction (HCl + CH) and the Walden-inversion substitution (H + CHCl) channels, the new PES accurately describes novel substitution pathways via retention of configuration. Quasiclassical trajectory simulation on this PES reveals that the substitution channel opens around 40 kcal/mol collision energy via Walden inversion and the retention cross sections raise from ∼50 kcal/mol. At collision energy of 80 kcal/mol, the retention pathways provide nearly 40% of the substitution cross section, and retention substitution may become the dominant mechanism of the Cl + CH reaction at superhigh collision energies. The substitution probability can be as high as ∼70% at zero impact parameter (b) and decreases rapidly with increasing b, whereas the abstraction opacity function is broad having 5-10% probability over a larger b-range. The high-energy angular distributions show scattering into forward and backward directions for the abstraction (direct stripping) and face-attack Walden-inversion substitution (direct rebound) channels, respectively. Retention can proceed via edge- and vertex-attack pathways producing dominant sideways scattering because the breaking C-H or Cl-H bond is usually at a side position of the forming Cl-C bond.
我们报道了一个化学精度的全局从头算全维势能面(PES),用于Cl(P) + CH反应,改进了我们之前势能面[Czakó, G.; Bowman, J. M. Science 2011, 334, 343 - 346]的高能区域。除了抽象(HCl + CH)和瓦尔登反转取代(H + CHCl)通道外,新的势能面还准确描述了通过构型保留的新型取代途径。在这个势能面上进行的准经典轨迹模拟表明,取代通道在约40 kcal/mol的碰撞能量下通过瓦尔登反转打开,保留截面从约50 kcal/mol开始升高。在80 kcal/mol的碰撞能量下,保留途径提供了近40%的取代截面,并且在超高碰撞能量下,保留取代可能成为Cl + CH反应的主导机制。在零碰撞参数(b)时,取代概率可高达约70%,并随着b的增加而迅速降低,而抽象不透明度函数较宽,在较大的b范围内具有5 - 10%的概率。高能角分布分别显示了抽象(直接剥离)通道向前和向后散射,以及面攻击瓦尔登反转取代(直接反弹)通道的情况。保留可以通过边缘攻击和顶点攻击途径进行,产生主要的侧向散射,因为断裂的C - H或Cl - H键通常位于形成的Cl - C键的侧面位置。