Suppr超能文献

通过对复温过程中量热数据的建模来探索蛋白质的去折叠。

Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating.

机构信息

Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.

International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.

出版信息

Sci Rep. 2017 Nov 24;7(1):16321. doi: 10.1038/s41598-017-16360-y.

Abstract

Studies of protein unfolding mechanisms are critical for understanding protein functions inside cells, de novo protein design as well as defining the role of protein misfolding in neurodegenerative disorders. Calorimetry has proven indispensable in this regard for recording full energetic profiles of protein unfolding and permitting data fitting based on unfolding pathway models. While both kinetic and thermodynamic protein stability are analysed by varying scan rates and reheating, the latter is rarely used in curve-fitting, leading to a significant loss of information from experiments. To extract this information, we propose fitting both first and second scans simultaneously. Four most common single-peak transition models are considered: (i) fully reversible, (ii) fully irreversible, (iii) partially reversible transitions, and (iv) general three-state models. The method is validated using calorimetry data for chicken egg lysozyme, mutated Protein A, three wild-types of haloalkane dehalogenases, and a mutant stabilized by protein engineering. We show that modelling of reheating increases the precision of determination of unfolding mechanisms, free energies, temperatures, and heat capacity differences. Moreover, this modelling indicates whether alternative refolding pathways might occur upon cooling. The Matlab-based data fitting software tool and its user guide are provided as a supplement.

摘要

研究蛋白质变性机制对于理解细胞内蛋白质的功能、从头设计蛋白质以及确定蛋白质错误折叠在神经退行性疾病中的作用至关重要。量热法在记录蛋白质变性的全能量谱并根据变性途径模型进行数据拟合方面被证明是不可或缺的。虽然通过改变扫描速率和重加热来分析动力学和热力学蛋白质稳定性,但后者很少用于曲线拟合,导致实验信息的大量损失。为了提取这些信息,我们建议同时拟合第一和第二扫描。考虑了四种最常见的单峰转变模型:(i)完全可逆,(ii)完全不可逆,(iii)部分可逆转变,和(iv)一般三态模型。该方法使用鸡卵溶菌酶、突变的 Protein A、三种卤代烷脱卤酶的野生型和通过蛋白质工程稳定的突变体的量热法数据进行了验证。我们表明,重加热的建模提高了确定变性机制、自由能、温度和热容差的精度。此外,这种建模还表明在冷却时是否可能发生替代的复性途径。提供了基于 Matlab 的数据拟合软件工具及其用户指南作为补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e18/5701188/cc719b00914c/41598_2017_16360_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验