Suppr超能文献

基于 MR 图像的放射组学特征,建立伽玛刀放射外科治疗后鉴别放射性坏死与肿瘤进展的预测模型。

A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images.

机构信息

Central South University Xiangya Hospital, Changsha, Hunan, China.

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Unit 1420, 1515 Holcombe Blvd, Houston, TX, 77030, USA.

出版信息

Eur Radiol. 2018 Jun;28(6):2255-2263. doi: 10.1007/s00330-017-5154-8. Epub 2017 Nov 24.

Abstract

OBJECTIVES

To develop a model using radiomic features extracted from MR images to distinguish radiation necrosis from tumour progression in brain metastases after Gamma Knife radiosurgery.

METHODS

We retrospectively identified 87 patients with pathologically confirmed necrosis (24 lesions) or progression (73 lesions) and calculated 285 radiomic features from four MR sequences (T1, T1 post-contrast, T2, and fluid-attenuated inversion recovery) obtained at two follow-up time points per lesion per patient. Reproducibility of each feature between the two time points was calculated within each group to identify a subset of features with distinct reproducible values between two groups. Changes in radiomic features from one time point to the next (delta radiomics) were used to build a model to classify necrosis and progression lesions.

RESULTS

A combination of five radiomic features from both T1 post-contrast and T2 MR images were found to be useful in distinguishing necrosis from progression lesions. Delta radiomic features with a RUSBoost ensemble classifier had an overall predictive accuracy of 73.2% and an area under the curve value of 0.73 in leave-one-out cross-validation.

CONCLUSIONS

Delta radiomic features extracted from MR images have potential for distinguishing radiation necrosis from tumour progression after radiosurgery for brain metastases.

KEY POINTS

• Some radiomic features showed better reproducibility for progressive lesions than necrotic ones • Delta radiomic features can help to distinguish radiation necrosis from tumour progression • Delta radiomic features had better predictive value than did traditional radiomic features.

摘要

目的

利用从磁共振成像中提取的放射组学特征,建立一种模型,以区分伽玛刀放射外科治疗后脑转移瘤后放射性坏死与肿瘤进展。

方法

我们回顾性地确定了 87 例经病理证实的坏死(24 个病灶)或进展(73 个病灶)患者,每个病灶在每个患者的两个随访时间点分别从四个磁共振序列(T1、T1 对比后、T2 和液体衰减反转恢复)中计算了 285 个放射组学特征。在每个组内计算每个特征在两个时间点之间的重复性,以确定具有两组之间明显可重复值的特征子集。使用从一个时间点到下一个时间点的放射组学特征变化(delta radiomics)来构建一个分类坏死和进展病变的模型。

结果

发现来自 T1 对比后和 T2MR 图像的五个放射组学特征的组合可用于区分坏死和进展病变。使用 RUSBoost 集成分类器的 delta radiomics 特征在留一法交叉验证中的总体预测准确率为 73.2%,曲线下面积值为 0.73。

结论

从磁共振图像中提取的 delta radiomics 特征可能有助于区分脑转移瘤放射外科治疗后的放射性坏死与肿瘤进展。

关键点

• 一些放射组学特征对进展性病变的重复性优于坏死性病变

• Delta radiomics 特征可帮助区分放射性坏死与肿瘤进展

• Delta radiomics 特征比传统放射组学特征具有更好的预测价值。

相似文献

2
Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases.
J Neurooncol. 2024 Jun;168(2):307-316. doi: 10.1007/s11060-024-04669-4. Epub 2024 Apr 30.
3
Distinguishing True Progression From Radionecrosis After Stereotactic Radiation Therapy for Brain Metastases With Machine Learning and Radiomics.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1236-1243. doi: 10.1016/j.ijrobp.2018.05.041. Epub 2018 May 24.
8
Postcontrast T1 Mapping for Differential Diagnosis of Recurrence and Radionecrosis after Gamma Knife Radiosurgery for Brain Metastasis.
AJNR Am J Neuroradiol. 2018 Jun;39(6):1025-1031. doi: 10.3174/ajnr.A5643. Epub 2018 May 3.

引用本文的文献

4
Development and validation of a deep learning algorithm for discriminating glioma recurrence from radiation necrosis on MRI.
Front Oncol. 2025 Jun 6;15:1573700. doi: 10.3389/fonc.2025.1573700. eCollection 2025.
5
Emerging Trends in Artificial Intelligence in Neuro-Oncology.
Curr Oncol Rep. 2025 Jun 12. doi: 10.1007/s11912-025-01688-w.
6
The clinical implications and interpretability of computational medical imaging (radiomics) in brain tumors.
Insights Imaging. 2025 Mar 30;16(1):77. doi: 10.1186/s13244-025-01950-6.
9
Artificial Intelligence in Brain Tumors.
Adv Exp Med Biol. 2024;1462:201-220. doi: 10.1007/978-3-031-64892-2_12.

本文引用的文献

4
Uncertainty analysis of quantitative imaging features extracted from contrast-enhanced CT in lung tumors.
Comput Med Imaging Graph. 2016 Mar;48:1-8. doi: 10.1016/j.compmedimag.2015.12.001. Epub 2015 Dec 14.
5
Differentiating Radiation-Induced Necrosis from Recurrent Brain Tumor Using MR Perfusion and Spectroscopy: A Meta-Analysis.
PLoS One. 2016 Jan 7;11(1):e0141438. doi: 10.1371/journal.pone.0141438. eCollection 2016.
6
Radiomics: Images Are More than Pictures, They Are Data.
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.
7
Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images.
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):E6265-73. doi: 10.1073/pnas.1505935112. Epub 2015 Nov 2.
10
Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI.
J Magn Reson Imaging. 2015 Nov;42(5):1362-8. doi: 10.1002/jmri.24913. Epub 2015 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验