Xu Wei, Hao Meiling
Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada.
Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
Genet Epidemiol. 2018 Feb;42(1):80-94. doi: 10.1002/gepi.22097. Epub 2017 Nov 26.
The expression of X-chromosome undergoes three possible biological processes: X-chromosome inactivation (XCI), escape of the X-chromosome inactivation (XCI-E), and skewed X-chromosome inactivation (XCI-S). Although these expressions are included in various predesigned genetic variation chip platforms, the X-chromosome has generally been excluded from the majority of genome-wide association studies analyses; this is most likely due to the lack of a standardized method in handling X-chromosomal genotype data. To analyze the X-linked genetic association for time-to-event outcomes with the actual process unknown, we propose a unified approach of maximizing the partial likelihood over all of the potential biological processes. The proposed method can be used to infer the true biological process and derive unbiased estimates of the genetic association parameters. A partial likelihood ratio test statistic that has been proved asymptotically chi-square distributed can be used to assess the X-chromosome genetic association. Furthermore, if the X-chromosome expression pertains to the XCI-S process, we can infer the correct skewed direction and magnitude of inactivation, which can elucidate significant findings regarding the genetic mechanism. A population-level model and a more general subject-level model have been developed to model the XCI-S process. Finite sample performance of this novel method is examined via extensive simulation studies. An application is illustrated with implementation of the method on a cancer genetic study with survival outcome.
X染色体的表达经历三种可能的生物学过程:X染色体失活(XCI)、X染色体失活逃逸(XCI-E)和X染色体失活偏斜(XCI-S)。尽管这些表达包含在各种预先设计的基因变异芯片平台中,但在大多数全基因组关联研究分析中,X染色体通常被排除在外;这很可能是由于在处理X染色体基因型数据时缺乏标准化方法。为了分析事件发生时间结局的X连锁遗传关联,而实际过程未知,我们提出了一种统一的方法,即对所有潜在生物学过程最大化部分似然。所提出的方法可用于推断真实的生物学过程,并得出遗传关联参数的无偏估计。已证明渐近服从卡方分布的部分似然比检验统计量可用于评估X染色体遗传关联。此外,如果X染色体表达属于XCI-S过程,我们可以推断出正确的失活偏斜方向和程度,这可以阐明有关遗传机制的重要发现。已经开发了群体水平模型和更一般的个体水平模型来对XCI-S过程进行建模。通过广泛的模拟研究检验了这种新方法的有限样本性能。通过在一项具有生存结局的癌症遗传研究中实施该方法来说明其应用。