Suppr超能文献

刷状氮化钴锚定碳纤维膜:集流器-催化剂一体化锂氧电池阴极用于长循环

Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li-O Batteries.

机构信息

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

出版信息

ACS Nano. 2018 Jan 23;12(1):128-139. doi: 10.1021/acsnano.7b03794. Epub 2017 Dec 4.

Abstract

To achieve a high reversibility and long cycle life for lithium-oxygen (Li-O) batteries, the irreversible formation of LiO, inevitable side reactions, and poor charge transport at the cathode interfaces should be overcome. Here, we report a rational design of air cathode using a cobalt nitride (CoN) functionalized carbon nanofiber (CNF) membrane as current collector-catalyst integrated air cathode. Brush-like CoN nanorods are uniformly anchored on conductive electrospun CNF papers via hydrothermal growth of Co(OH)F nanorods followed by nitridation step. CoN-decorated CNF (CoN/CNF) cathode exhibited excellent electrochemical performance with outstanding stability for over 177 cycles in Li-O cells. During cycling, metallic CoN nanorods provide sufficient accessible reaction sites as well as facile electron transport pathway throughout the continuously networked CNF. Furthermore, thin oxide layer (<10 nm) formed on the surface of CoN nanorods promote reversible formation/decomposition of film-type LiO, leading to significant reduction in overpotential gap (∼1.23 V at 700 mAh g). Moreover, pouch-type Li-air cells using CoN/CNF cathode stably operated in real air atmosphere even under 180° bending. The results demonstrate that the favorable formation/decomposition of reaction products and mediation of side reactions are hugely governed by the suitable surface chemistry and tailored structure of cathode materials, which are essential for real Li-air battery applications.

摘要

为了实现锂氧(Li-O)电池的高可逆性和长循环寿命,必须克服 LiO 的不可逆形成、不可避免的副反应以及阴极界面处的电荷传输不良。在这里,我们报告了一种使用氮化钴(CoN)功能化碳纳米纤维(CNF)膜作为集流器-催化剂集成空气阴极的合理空气阴极设计。通过 Co(OH)F 纳米棒的水热生长和随后的氮化步骤,将刷状 CoN 纳米棒均匀地锚定在导电静电纺丝 CNF 纸上。CoN 修饰的 CNF(CoN/CNF)阴极在 Li-O 电池中表现出优异的电化学性能和超过 177 次循环的出色稳定性。在循环过程中,金属 CoN 纳米棒提供了充足的可及反应位点以及贯穿连续网络 CNF 的易于电子传输途径。此外,在 CoN 纳米棒表面形成的薄氧化物层(<10nm)促进了薄膜型 LiO 的可逆形成/分解,从而显著降低了过电位间隙(在 700mAh g 时约为 1.23V)。此外,使用 CoN/CNF 阴极的袋式 Li-空气电池即使在 180°弯曲下也能在真实空气气氛中稳定运行。结果表明,反应产物的合适形成/分解以及副反应的调节受阴极材料的合适表面化学和定制结构的极大影响,这对于实际的 Li-空气电池应用至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验