A.A.Kharkevich Institute for Information Transmission Problems, RAS, Bolshoy Karetny per. 19, Moscow, 127051, Russia.
Vavilov Institute of General Genetics, Gubkin 3, Moscow, 119991, Russia.
Biol Direct. 2017 Nov 25;12(1):28. doi: 10.1186/s13062-017-0200-7.
Bacterial carbohydrate metabolism is extremely diverse, since carbohydrates serve as a major energy source and are involved in a variety of cellular processes. Bacterial genes belonging to same metabolic pathway are often co-localized in the chromosome, but it is not a strict rule. Gene co-localization in linked to co-evolution and co-regulation. This study focuses on a large-scale analysis of bacterial genomic loci related to the carbohydrate metabolism.
We demonstrate that only 53% of 148,000 studied genes from over six hundred bacterial genomes are co-localized in bacterial genomes with other carbohydrate metabolism genes, which points to a significant role of singleton genes. Co-localized genes form cassettes, ranging in size from two to fifteen genes. Two major factors influencing the cassette-forming tendency are gene function and bacterial phylogeny. We have obtained a comprehensive picture of co-localization preferences of genes for nineteen major carbohydrate metabolism functional classes, over two hundred gene orthologous clusters, and thirty bacterial classes, and characterized the cassette variety in size and content among different species, highlighting a significant role of short cassettes. The preference towards co-localization of carbohydrate metabolism genes varies between 40 and 76% for bacterial taxa. Analysis of frequently co-localized genes yielded forty-five significant pairwise links between genes belonging to different functional classes. The number of such links per class range from zero to eight, demonstrating varying preferences of respective genes towards a specific chromosomal neighborhood. Genes from eleven functional classes tend to co-localize with genes from the same class, indicating an important role of clustering of genes with similar functions. At that, in most cases such co-localization does not originate from local duplication events.
Overall, we describe a complex web formed by evolutionary relationships of bacterial carbohydrate metabolism genes, manifested as co-localization patterns.
This article was reviewed by Daria V. Dibrova (A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia), nominated by Armen Mulkidjanian (University of Osnabrück, Germany), Igor Rogozin (NCBI, NLM, NIH, USA) and Yuri Wolf (NCBI, NLM, NIH, USA).
细菌的碳水化合物代谢是极其多样化的,因为碳水化合物是主要的能量来源,并参与多种细胞过程。属于同一代谢途径的细菌基因通常在染色体上共定位,但这不是严格的规则。基因共定位与共同进化和共同调节有关。本研究侧重于对与碳水化合物代谢相关的细菌基因组基因座进行大规模分析。
我们证明,在来自 600 多个细菌基因组的 148000 个研究基因中,只有 53%与其他碳水化合物代谢基因共定位在细菌基因组中,这表明单基因的作用显著。共定位的基因形成基因盒,大小从两个到十五个基因不等。影响基因形成倾向的两个主要因素是基因功能和细菌系统发育。我们获得了 19 个主要碳水化合物代谢功能类别的基因共定位偏好、200 多个基因直系同源簇和 30 个细菌类别的综合图景,并对不同物种中基因盒的大小和内容进行了特征描述,突出了短基因盒的重要作用。不同细菌类群的碳水化合物代谢基因共定位偏好率在 40%至 76%之间。对经常共定位的基因进行分析,得到了 45 个属于不同功能类别的基因之间的显著成对关联。每个类别的此类关联数量从 0 到 8 不等,表明各自基因对特定染色体邻域的偏好程度不同。来自 11 个功能类别的基因倾向于与同一类别的基因共定位,这表明具有相似功能的基因聚类的重要作用。在大多数情况下,这种共定位并非源自局部重复事件。
总体而言,我们描述了细菌碳水化合物代谢基因的进化关系形成的复杂网络,表现为共定位模式。
本文由 Daria V. Dibrova(俄罗斯莫斯科国立大学 A.N. 别洛泽尔斯基物理化学生物学研究所)审稿,由 Armen Mulkidjanian(德国奥斯纳布吕克大学)提名,Igor Rogozin(NCBI、NLM、NIH,美国)和 Yuri Wolf(NCBI、NLM、NIH,美国)参与。