Lapin Norman A, Vergara Leoncio A, Mackeyev Yuri, Newton Jared M, Dilliard Sean A, Wilson Lon J, Curley Steven A, Serda Rita E
Michael E DeBakey Department of Surgery, Baylor College of Medicine.
Institute of Biosciences & Technology, Texas A&M University.
Int J Nanomedicine. 2017 Nov 15;12:8289-8307. doi: 10.2147/IJN.S138641. eCollection 2017.
[60]Fullerene is a highly versatile nanoparticle (NP) platform for drug delivery to sites of pathology owing to its small size and both ease and versatility of chemical functionalization, facilitating multisite drug conjugation, drug targeting, and modulation of its physicochemical properties. The prominent and well-characterized role of the enhanced permeation and retention (EPR) effect in facilitating NP delivery to tumors motivated us to explore vascular transport kinetics of a water-soluble [60]fullerene derivatives using intravital microscopy in an immune competent murine model of breast adenocarcinoma. Herein, we present a novel local and global image analysis of vascular transport kinetics at the level of individual tumor blood vessels on the micron scale and across whole images, respectively. Similar to larger nanomaterials, [60]fullerenes displayed rapid extravasation from tumor vasculature, distinct from that in normal microvasculature. Temporal heterogeneity in fullerene delivery to tumors was observed, demonstrating the issue of nonuniform delivery beyond spatial dimensions. Trends in local region analysis of fullerene biokinetics by fluorescence quantification were in agreement with global image analysis. Further analysis of intratumoral vascular clearance rates suggested a possible enhanced penetration and retention effect of the fullerene compared to a 70 kDa vascular tracer. Overall, this study demonstrates the feasibility of tracking and quantifying the delivery kinetics and intratumoral biodistribution of fullerene-based drug delivery platforms, consistent with the EPR effect on short timescales and passive transport to tumors.
[60]富勒烯是一种高度通用的纳米颗粒(NP)平台,由于其尺寸小以及化学功能化的简便性和通用性,可用于将药物递送至病理部位,便于多部位药物偶联、药物靶向以及调节其物理化学性质。增强渗透与滞留(EPR)效应在促进纳米颗粒递送至肿瘤方面的显著且已充分表征的作用,促使我们在具有免疫活性的乳腺腺癌小鼠模型中,使用活体显微镜探索水溶性[60]富勒烯衍生物的血管运输动力学。在此,我们分别在微米尺度的单个肿瘤血管水平和整个图像上,展示了一种新颖的血管运输动力学局部和全局图像分析方法。与较大的纳米材料类似,[60]富勒烯从肿瘤血管中快速渗出,这与正常微血管中的情况不同。观察到富勒烯递送至肿瘤存在时间异质性,这表明除空间维度外还存在递送不均匀的问题。通过荧光定量对富勒烯生物动力学进行局部区域分析的趋势与全局图像分析一致。对肿瘤内血管清除率的进一步分析表明,与70 kDa血管示踪剂相比,富勒烯可能具有增强的渗透和滞留效应。总体而言,本研究证明了跟踪和量化基于富勒烯的药物递送平台的递送动力学和肿瘤内生物分布的可行性,这与EPR效应在短时间尺度上以及向肿瘤的被动运输相一致。