IEEE Trans Image Process. 2018 Feb;27(2):721-734. doi: 10.1109/TIP.2017.2766780.
Stereoscopic video quality assessment (SVQA) is a challenging problem. It has not been well investigated on how to measure depth perception quality independently under different distortion categories and degrees, especially exploit the depth perception to assist the overall quality assessment of 3D videos. In this paper, we propose a new depth perception quality metric (DPQM) and verify that it outperforms existing metrics on our published 3D video extension of High Efficiency Video Coding (3D-HEVC) video database. Furthermore, we validate its effectiveness by applying the crucial part of the DPQM to a novel blind stereoscopic video quality evaluator (BSVQE) for overall 3D video quality assessment. In the DPQM, we introduce the feature of auto-regressive prediction-based disparity entropy (ARDE) measurement and the feature of energy weighted video content measurement, which are inspired by the free-energy principle and the binocular vision mechanism. In the BSVQE, the binocular summation and difference operations are integrated together with the fusion natural scene statistic measurement and the ARDE measurement to reveal the key influence from texture and disparity. Experimental results on three stereoscopic video databases demonstrate that our method outperforms state-of-the-art SVQA algorithms for both symmetrically and asymmetrically distorted stereoscopic video pairs of various distortion types.
立体视频质量评估(SVQA)是一个具有挑战性的问题。目前还没有很好的研究方法来衡量不同失真类别和程度下的深度感知质量,特别是利用深度感知来辅助 3D 视频的整体质量评估。在本文中,我们提出了一种新的深度感知质量度量(DPQM),并验证了它在我们发布的基于高效视频编码(3D-HEVC)视频数据库的 3D 视频扩展上优于现有度量。此外,我们通过将 DPQM 的关键部分应用于一种新的用于整体 3D 视频质量评估的盲立体视频质量评估器(BSVQE)来验证其有效性。在 DPQM 中,我们引入了基于自回归预测的视差熵(ARDE)测量的特征和能量加权视频内容测量的特征,这是受自由能原理和双目视觉机制的启发。在 BSVQE 中,双目求和与差操作与融合自然场景统计测量和 ARDE 测量相结合,以揭示纹理和视差的关键影响。在三个立体视频数据库上的实验结果表明,我们的方法在对称和非对称失真的各种失真类型的立体视频对上都优于最新的 SVQA 算法。