文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

体外补体激活和低分子右旋糖酐包被 SPION 在猪 CARPA 模型中的致反应性:与理化特性和临床信息的相关性。

Complement activation in vitro and reactogenicity of low-molecular weight dextran-coated SPIONs in the pig CARPA model: Correlation with physicochemical features and clinical information.

机构信息

Nanomedicine Research and Education Center, Dept. Pathophysiology, Semmelweis University, Budapest, Hungary; Dept. Targeted Therapeutics, MIRA Institute, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.

Dept. Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands.

出版信息

J Control Release. 2018 Jan 28;270:268-274. doi: 10.1016/j.jconrel.2017.11.043. Epub 2017 Dec 2.


DOI:10.1016/j.jconrel.2017.11.043
PMID:29203414
Abstract

The unique magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) have led to their increasing use in drug delivery and imaging applications. Some polymer-coated SPIONs, however, share with many other nanoparticles the potential of causing hypersensitivity reactions (HSRs) known as complement (C) activation-related pseudoallergy (CARPA). In order to explore the roles of iron core composition and particle surface coating in SPION-induced CARPA, we measured C activation by 6 different SPIONs in a human serum that is known to react to nanoparticles (NPs) with strong C activation. Remarkably, only the carboxymethyldextran-coated (ferucarbotran, Resosvist®) and dextran-coated (ferumoxtran-10, Sinerem®) SPIONs caused significant C activation, while the citric acid, phosphatidylcholine, starch and chitosan-coated SPIONs had no such effect. Focusing on Resovist and Sinerem, we found Sinerem to be a stronger activator of C than Resovist, although the individual variation in 15 different human sera was substantial. Further analysis of C activation by Sinerem indicated biphasic dose dependence and significant production of C split product Bb but not C4d, attesting to alternative pathway C activation only at low doses. Consistent with the strong C activation by Sinerem and previous reports of HSRs in man, injection of Sinerem in a pig led to dose-dependent CARPA, while Resovist was reaction-free. Using nanoparticle tracking analysis, it was further determined that Sinerem, more than Resovist, displayed multimodal size distribution and significant fraction of aggregates - factors which are known to promote C activation and CARPA. Taken together, our findings offer physicochemical insight into how key compositional factors and nanoparticle size distribution affect SPION-induced CARPA, a knowledge that could lead to the development of SPIONs with improved safety profiles.

摘要

超顺磁氧化铁纳米粒子(SPIONs)具有独特的磁性能,因此越来越多地被应用于药物输送和成像应用。然而,一些聚合物涂层的 SPIONs 与许多其他纳米粒子一样,具有引起称为补体(C)激活相关假性过敏(CARPA)的过敏反应的潜力。为了探讨铁核组成和颗粒表面涂层在 SPION 诱导的 CARPA 中的作用,我们在已知对具有强 C 激活作用的纳米颗粒(NPs)发生反应的人血清中测量了 6 种不同 SPION 的 C 激活。值得注意的是,只有羧甲基葡聚糖涂层(ferucarbotran,Resosvist®)和葡聚糖涂层(ferumoxtran-10,Sinerem®)的 SPION 引起了显著的 C 激活,而柠檬酸、磷脂酰胆碱、淀粉和壳聚糖涂层的 SPION 则没有这种作用。我们专注于 Resovist 和 Sinerem,发现 Sinerem 比 Resovist 更强地激活 C,尽管 15 种不同人血清中的个体差异很大。对 Sinerem 的 C 激活进一步分析表明存在双相剂量依赖性,并且显著产生 C 分裂产物 Bb 而不是 C4d,这仅证明在低剂量下存在替代途径 C 激活。与 Sinerem 的强 C 激活以及先前报道的人发生 HSR 一致,在猪中注射 Sinerem 导致剂量依赖性 CARPA,而 Resovist 则无反应。使用纳米颗粒跟踪分析,进一步确定 Sinerem 比 Resovist 更显示出多模态尺寸分布和显著的聚集部分 - 这些因素已知会促进 C 激活和 CARPA。总之,我们的研究结果提供了关于关键组成因素和纳米颗粒尺寸分布如何影响 SPION 诱导的 CARPA 的物理化学见解,这一知识可能导致开发具有改善安全性的 SPIONs。

相似文献

[1]
Complement activation in vitro and reactogenicity of low-molecular weight dextran-coated SPIONs in the pig CARPA model: Correlation with physicochemical features and clinical information.

J Control Release. 2017-12-2

[2]
Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging.

Int J Nanomedicine. 2017-7-24

[3]
Involvement of complement activation in the pulmonary vasoactivity of polystyrene nanoparticles in pigs: unique surface properties underlying alternative pathway activation and instant opsonization.

Int J Nanomedicine. 2018-10-11

[4]
Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety.

Int J Nanomedicine. 2018-3-28

[5]
Features of complement activation-related pseudoallergy to liposomes with different surface charge and PEGylation: comparison of the porcine and rat responses.

J Control Release. 2014-8-19

[6]
Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals.

Mol Immunol. 2014-8-12

[7]
In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting.

J Biomed Mater Res B Appl Biomater. 2014-5

[8]
A porcine model of complement-mediated infusion reactions to drug carrier nanosystems and other medicines.

Adv Drug Deliv Rev. 2012-7-20

[9]
Efficient MRI labeling of endothelial progenitor cells: design of thiolated surface stabilized superparamagnetic iron oxide nanoparticles.

Eur J Pharm Biopharm. 2013-11

[10]
Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum.

Part Fibre Toxicol. 2014-11-26

引用本文的文献

[1]
Nanoparticle-Binding Immunoglobulins Predict Variable Complement Responses in Healthy and Diseased Cohorts.

ACS Nano. 2024-10-22

[2]
Evaluation of the Acute Anaphylactoid Reactogenicity of Nanoparticle-Containing Medicines and Vaccines Using the Porcine CARPA Model.

Methods Mol Biol. 2024

[3]
Detection of Intracellular Complement Activation by Nanoparticles in Human T Lymphocytes.

Methods Mol Biol. 2024

[4]
Interplay between Liposomes and IgM: Principles, Challenges, and Opportunities.

Adv Sci (Weinh). 2023-7

[5]
Comparative in vitro and in vivo Evaluation of Different Iron Oxide-Based Contrast Agents to Promote Clinical Translation in Compliance with Patient Safety.

Int J Nanomedicine. 2023

[6]
Lessons learned from immunological characterization of nanomaterials at the Nanotechnology Characterization Laboratory.

Front Immunol. 2022

[7]
Recent advances in drug delivery and targeting to the brain.

J Control Release. 2022-10

[8]
[Standardized contrast-enhanced ultrasound (CEUS) in clinical acute and emergency medicine and critical care (CEUS Acute) : Consensus statement of DGIIN, DIVI, DGINA, DGAI, DGK, ÖGUM, SGUM and DEGUM].

Med Klin Intensivmed Notfmed. 2022-2

[9]
Combating Complement's Deleterious Effects on Nanomedicine by Conjugating Complement Regulatory Proteins to Nanoparticles.

Adv Mater. 2022-2

[10]
To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives.

Adv Drug Deliv Rev. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索