Unconventional Reservoirs Technology, BP America Inc, Houston, TX 77079.
Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78712;
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13406-13411. doi: 10.1073/pnas.1707580114. Epub 2017 Dec 4.
The segregation of dense core-forming melts by porous flow is a natural mechanism for core formation in early planetesimals. However, experimental observations show that texturally equilibrated metallic melt does not wet the silicate grain boundaries and tends to reside in isolated pockets that prevent percolation. Here we use pore-scale simulations to determine the minimum melt fraction required to induce porous flow, the percolation threshold. The composition of terrestrial planets suggests that typical planetesimals contain enough metal to overcome this threshold. Nevertheless, it is currently thought that melt segregation is prevented by a pinch-off at melt fractions slightly below the percolation threshold. In contrast to previous work, our simulations on irregular grain geometries reveal that a texturally equilibrated melt network remains connected down to melt fractions of only 1 to 2%. This hysteresis in melt connectivity allows percolative core formation in planetesimals that contain enough metal to exceed the percolation threshold. Evidence for the percolation of metallic melt is provided by X-ray microtomography of primitive achondrite Northwest Africa (NWA) 2993. Microstructural analysis shows that the metal-silicate interface has characteristics expected for a texturally equilibrated pore network with a dihedral angle of ∼85°. The melt network therefore remained close to textural equilibrium despite a complex history. This suggests that the hysteresis in melt connectivity is a viable process for percolative core formation in the parent bodies of primitive achondrites.
由多孔流引起的密集核形成熔体的分离是早期星子中核形成的自然机制。然而,实验观察表明,结构上平衡的金属熔体不会润湿硅酸盐晶界,并且倾向于存在于阻止渗透的孤立口袋中。在这里,我们使用孔隙尺度模拟来确定引起多孔流的最小熔体分数,即渗透阈值。地球行星的组成表明,典型的星子含有足够的金属来克服这个阈值。尽管如此,目前人们认为,熔体分离是由于熔体分数略低于渗透阈值而发生的堵塞所阻止的。与之前的工作相比,我们对不规则晶粒几何形状的模拟表明,在熔体分数仅为 1%至 2%的情况下,结构平衡的熔体网络仍然保持连接。这种熔体连通性的滞后性允许在含有足够金属以超过渗透阈值的星子中发生渗透性核形成。金属熔体渗透的证据是通过对原始无球粒陨石 Northwest Africa (NWA) 2993 的 X 射线微断层扫描提供的。微观结构分析表明,金属-硅酸盐界面具有与约 85°的二面角相对应的结构平衡孔隙网络的特征。因此,尽管经历了复杂的历史,熔体网络仍接近结构平衡。这表明,熔体连通性的滞后性是原始无球粒陨石母体中渗透性核形成的一种可行过程。