Chu Xin, Zhang Kou Lin
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China.
Acta Crystallogr C Struct Chem. 2017 Dec 1;73(Pt 12):1087-1097. doi: 10.1107/S2053229617014899. Epub 2017 Nov 9.
The assembly of Cu with the multifunctional ligand 2-amino-4-sulfobenzoic acid (Hasba) in the presence of the auxiliary flexible ligands 1,4-bis(triazol-1-ylmethyl)benzene (bbtz) and 1,4-bis(imidazol-1-ylmethyl)benzene (bix) under ambient conditions resulted in two new supramolecular coordination polymers, namely poly[[(3-amino-4-carboxybenzenesulfonato-κO)aquabis[μ-1,4-bis(triazol-1-ylmethyl)benzene-κN:N]copper(II)] 3-amino-4-carboxybenzenesulfonate tetrahydrate], {Cu(CHNOS)(CHN)(HO)·4HO}, (1), and poly[[bis(μ-2-amino-4-sulfonatobenzoato-κO:N,O)tetraaqua[μ-1,4-bis(triazol-1-ylmethyl)benzene-κN:N]dicopper(II)] tetrahydrate], {[Cu(CHNOS)(CHN)(HO)]·4HO}, (2). Single-crystal X-ray structure diffraction analysis of (1) reveals that the bbtz ligand acts as a bridge, linking adjacent Cu ions into a two-dimensional cationic (4,4) topological network, in which the coordinated 3-amino-4-carboxybenzenesulfonate (Hasba) anion uses its sulfonate group to bind with the Cu ion in a monodentate fashion and the carboxylate group remains protonated. The lattice Hasba anion resides in the two-dimensional layer and balances the charge. The carboxylate group of the 2-amino-4-sulfonatobenzoate (asba) ligand in (2) is involved in bidentate coordination, connecting adjacent Cu ions into carboxylate-bridged chains which are further bridged by the auxiliary flexible bix ligand in a trans-gauche (TG) mode, resulting in the formation of a two-dimensional network architecture. The amino group of the asba ligand in (2) also takes part in the coordination with the central Cu ion. The six-coordinated Cu centres in (1) and (2) exhibit distorted octahedral coordination geometries. Extensive hydrogen bonding exists in both (1) and (2). The interlayer hydrogen bonds in both compounds further extend adjacent two-dimensional layers into three-dimensional supramolecular network architectures. Furthermore, a detailed analysis of the solid-state UV-Vis-NIR (NIR is near IR) diffuse reflectance data indicates that (1) and (2) may have potential as wide band gap indirect semiconductor materials. Compounds (1) and (2) show reversible and irreversible dehydration-rehydration behaviours, respectively.
在环境条件下,铜与多功能配体2-氨基-4-磺酸基苯甲酸(Hasba),在辅助柔性配体1,4-双(1-三唑基甲基)苯(bbtz)和1,4-双(1-咪唑基甲基)苯(bix)存在下反应,生成了两种新的超分子配位聚合物,即聚[[(3-氨基-4-羧基苯磺酸根-κO)水二[μ-1,4-双(1-三唑基甲基)苯-κN:N]铜(II)] 3-氨基-4-羧基苯磺酸盐四水合物],{Cu(CHNOS)(CHN)(HO)·4HO},(1),以及聚[[双(μ-2-氨基-4-磺酸基苯甲酰基-κO:N,O)四水合[μ-1,4-双(1-三唑基甲基)苯-κN:N]二铜(II)]四水合物],{[Cu(CHNOS)(CHN)(HO)]·4HO},(2)。对(1)的单晶X射线结构衍射分析表明,bbtz配体起到桥连作用 将相邻的铜离子连接成二维阳离子(4,4)拓扑网络,其中配位的3-氨基-4-羧基苯磺酸根(Hasba)阴离子利用其磺酸根基团以单齿方式与铜离子结合,而羧酸根基团保持质子化状态。晶格中的Hasba阴离子存在于二维层中并平衡电荷。(2)中2-氨基-4-磺酸基苯甲酸酯(asba)配体的羧酸根基团参与双齿配位,将相邻的铜离子连接成羧酸根桥连链,这些链进一步通过辅助柔性bix配体以反式-gauche(TG)模式桥连,形成二维网络结构。(2)中asba配体的氨基也参与与中心铜离子的配位。(1)和(2)中六配位的铜中心呈现出扭曲的八面体配位几何构型。(1)和(2)中均存在广泛的氢键。两种化合物中的层间氢键进一步将相邻的二维层扩展为三维超分子网络结构。此外,对固态紫外-可见-近红外(NIR为近红外)漫反射数据的详细分析表明,(1)和(2)可能具有作为宽带隙间接半导体材料的潜力。化合物(1)和(2)分别表现出可逆和不可逆的脱水-再水合行为。