Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany.
Institute of Neuroanatomy and JARA-BRAIN, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
J Neurochem. 2018 Feb;144(3):285-301. doi: 10.1111/jnc.14270. Epub 2018 Jan 5.
The extent of remyelination in multiple sclerosis lesions is often incomplete. Injury to oligodendrocyte progenitor cells can be a contributing factor for such incomplete remyelination. The precise mechanisms underlying insufficient repair remain to be defined, but oxidative stress appears to be involved. Here, we used immortalized oligodendrocyte cell lines as model systems to investigate a causal relation of oxidative stress and endoplasmic reticulum stress signaling cascades. OLN93 and OliNeu cells were subjected to chemical hypoxia by blocking the respiratory chain at various levels. Mitochondrial membrane potential and oxidative stress levels were quantified by flow cytometry. Endoplasmic reticulum stress was monitored by the expression induction of activating transcription factor 3 and 4 (Atf3, Atf4), DNA damage-inducible transcript 3 protein (Ddit3), and glucose-regulated protein 94. Lentiviral silencing of nuclear factor (erythroid-derived 2)-like 2 or kelch-like ECH-associated protein 1 was applied to study the relevance of NRF2 for endoplasmic reticulum stress responses. We demonstrate that inhibition of the respiratory chain induces oxidative stress in cultured oligodendrocytes which is paralleled by the expression induction of distinct mediators of the endoplasmic reticulum stress response, namely Atf3, Atf4, and Ddit3. Atf3 and Ddit3 expression induction is potentiated in kelch-like ECH-associated protein 1-deficient cells and absent in cells lacking the oxidative stress-related transcription factor NRF2. This study provides strong evidence that oxidative stress in oligodendrocytes activates endoplasmic reticulum stress response in a NRF2-dependent manner and, in consequence, might regulate oligodendrocyte degeneration in multiple sclerosis and other neurological disorders.
多发性硬化症病变中的髓鞘再生程度常常不完全。少突胶质前体细胞的损伤可能是导致这种不完全髓鞘再生的一个因素。导致修复不足的确切机制仍有待确定,但氧化应激似乎与之相关。在这里,我们使用永生化的少突胶质细胞系作为模型系统,研究氧化应激和内质网应激信号级联之间的因果关系。OLN93 和 OliNeu 细胞通过在不同水平阻断呼吸链来模拟化学缺氧。通过流式细胞术来量化线粒体膜电位和氧化应激水平。通过激活转录因子 3 和 4(Atf3、Atf4)、DNA 损伤诱导转录 3 蛋白(Ddit3)和葡萄糖调节蛋白 94 的表达诱导来监测内质网应激。应用慢病毒沉默核因子(红系衍生 2)样 2 或 Kelch 样 ECH 相关蛋白 1,以研究 NRF2 与内质网应激反应的相关性。我们证明,呼吸链的抑制会在培养的少突胶质细胞中诱导氧化应激,同时伴随着内质网应激反应的不同介质的表达诱导,即 Atf3、Atf4 和 Ddit3。在 Kelch 样 ECH 相关蛋白 1 缺陷细胞中,Atf3 和 Ddit3 的表达诱导增强,而在缺乏与氧化应激相关的转录因子 NRF2 的细胞中则不存在。这项研究提供了有力的证据表明,氧化应激会激活少突胶质细胞中的内质网应激反应,这可能会调节多发性硬化症和其他神经疾病中的少突胶质细胞退化。