Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA.
ChemSusChem. 2018 Feb 9;11(3):580-588. doi: 10.1002/cssc.201701947. Epub 2018 Jan 15.
The sluggish reaction kinetics of the oxygen reduction reaction (ORR) has been the limiting factor for fuel energy utilization, hence it is desirable to develop high-performance electrocatalysts for a 4-electron pathway ORR. A constant low-current (50 μA) electrodeposition technique is used to realize the formation of a uniform Co O film on well-aligned electrospun carbon nanofibers (ECNFs) with a time-dependent growth mechanism. This material also exhibits a new finding of mT magnetic field-induced enhancement of the electron exchange number of the ORR at a glassy carbon electrode modified with the Co O /ECNFs catalyst. The magnetic susceptibility of the unpaired electrons in Co O improves the kinetics and efficiency of electron transfer reactions in the ORR, which shows a 3.92-electron pathway in the presence of a 1.32 mT magnetic field. This research presents a potential revolution of traditional electrocatalysis by simply applying an external magnetic field on metal oxides as a replacement for noble metals to reduce the risk of fuel-cell degradation and maximize the energy output.
氧还原反应(ORR)的缓慢反应动力学一直是限制燃料能量利用的因素,因此需要开发用于 4 电子途径 ORR 的高性能电催化剂。采用恒低电流(50μA)电沉积技术,实现了在取向良好的电纺碳纤维(ECNF)上均匀形成 CoO 膜,具有依赖时间的生长机制。该材料还在玻璃碳电极上修饰 CoO/ECNFs 催化剂时发现了一个新的现象,即在 mT 磁场下可增强 ORR 的电子交换数。CoO 中未成对电子的磁化率提高了 ORR 中电子转移反应的动力学和效率,在存在 1.32 mT 磁场的情况下表现出 3.92 电子途径。这项研究通过在金属氧化物上施加外部磁场来简单地替代贵金属,从而为传统电催化带来了潜在的变革,降低了燃料电池降解的风险并最大程度地提高了能量输出。