Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States.
Department of Ophthalmology, Mayo Clinic, Rochester, MN, United States.
Acta Biomater. 2018 Feb;67:134-146. doi: 10.1016/j.actbio.2017.11.058. Epub 2017 Dec 9.
Recent phase 1 trials of embryonic stem cell and induced pluripotent stem cell (iPSCs) derived RPE transplants for the treatment of macular degeneration have demonstrated the relative safety of this process. However, there is concern over clumping, thickening, folding, and wrinkling of the transplanted RPE. To deliver a flat RPE monolayer, current phase 1 trials are testing synthetic substrates for RPE transplantation. These substrates, however, cause localized inflammation and fibrosis in animal models due to long degradation times. Here we describe the use of thin fibrin hydrogels as a support material for the transplantation of RPE. Fibrin was formed into a mechanically rigid support that allow for easy manipulation with standard surgical instruments. Using fibrinolytic enzymes, fibrin hydrogels were degraded on the scale of hours. The rate of degradation could be controlled by varying the fibrinolytic enzyme concentration used. RPE cells degraded fibrin spontaneously. To preserve the fibrin support during differentiation of iPSCs to RPE, media was supplemented with the protease inhibitor aprotinin. iPSC-RPE on fibrin gels remained viable, generated monolayers with characteristic cobblestone appearance and dark pigmentation, and expressed mRNA and protein markers characteristic of RPE in the eye. Following differentiation of the cells, addition of fibrinolytic enzymes fully and rapidly degraded the fibrin support leaving behind an intact, viable iPSC-RPE monolayer. In conclusion, human fibrin hydrogels provide a xeno-free support on which iPSCs can be differentiated to RPE cells for transplant which can be rapidly degraded under controlled conditions using fibrinolytic enzymes without adverse effects to the cells.
Stem cell-derived retinal pigment epithelial (RPE) cell transplantation is currently in phase 1 clinical trials for macular degeneration (MD). A major obstacle in these studies is delivering the RPE as a living, flat sheets without leaving behind foreign materials in the retina. Here we investigate the suitability of using hydrogels made from human blood-derived proteins for RPE transplant. Our data shows that these fibrin hydrogels are rigid enough for use in surgery, support growth of stem cell-derived RPE, and are easily degraded within hours without damage to the RPE sheet. These fibrin hydrogels offer a promising solution to transplant RPE for patients with MD.
最近的胚胎干细胞和诱导多能干细胞(iPSC)衍生的 RPE 移植治疗黄斑变性的 1 期临床试验已经证明了该过程的相对安全性。然而,人们担心移植的 RPE 会发生聚集、增厚、折叠和起皱。为了提供平坦的 RPE 单层,目前的 1 期临床试验正在测试用于 RPE 移植的合成底物。然而,由于降解时间长,这些底物在动物模型中会引起局部炎症和纤维化。在这里,我们描述了将薄纤维蛋白水凝胶用作 RPE 移植的支撑材料。纤维蛋白被制成机械刚性支撑物,便于使用标准手术器械进行操作。使用纤维蛋白溶酶,纤维蛋白水凝胶可以在数小时内降解。通过改变使用的纤维蛋白溶酶浓度,可以控制降解速度。RPE 细胞会自发降解纤维蛋白。为了在 iPSC 分化为 RPE 的过程中保留纤维蛋白支撑物,培养基中添加了蛋白酶抑制剂抑肽酶。在纤维蛋白凝胶上的 iPSC-RPE 仍然具有活力,生成具有典型鹅卵石外观和深色素沉着的单层,并表达 RPE 在眼中的特征性 mRNA 和蛋白质标志物。在细胞分化后,添加纤维蛋白溶酶可完全且快速地降解纤维蛋白支撑物,留下完整的、有活力的 iPSC-RPE 单层。总之,人纤维蛋白水凝胶提供了一种无异种的支撑物,可在其上分化 iPSC 为 RPE 细胞,这些细胞可在受控条件下使用纤维蛋白溶酶快速降解,而不会对细胞产生不利影响。
干细胞衍生的视网膜色素上皮(RPE)细胞移植目前正在进行黄斑变性(MD)的 1 期临床试验。在这些研究中,一个主要障碍是将 RPE 作为活的、平坦的薄片输送,而不在视网膜中留下异物。在这里,我们研究了使用源自人血液的蛋白质制成的水凝胶用于 RPE 移植的适用性。我们的数据表明,这些纤维蛋白水凝胶足够坚硬,可用于手术,支持干细胞衍生的 RPE 生长,并且可以在数小时内轻松降解,而不会损坏 RPE 薄片。这些纤维蛋白水凝胶为 MD 患者的 RPE 移植提供了有希望的解决方案。