Suppr超能文献

CS-ToF:高分辨率压缩飞行时间成像。

CS-ToF: High-resolution compressive time-of-flight imaging.

作者信息

Li Fengqiang, Chen Huaijin, Pediredla Adithya, Yeh Chiakai, He Kuan, Veeraraghavan Ashok, Cossairt Oliver

出版信息

Opt Express. 2017 Dec 11;25(25):31096-31110. doi: 10.1364/OE.25.031096.

Abstract

Three-dimensional imaging using Time-of-flight (ToF) sensors is rapidly gaining widespread adoption in many applications due to their cost effectiveness, simplicity, and compact size. However, the current generation of ToF cameras suffers from low spatial resolution due to physical fabrication limitations. In this paper, we propose CS-ToF, an imaging architecture to achieve high spatial resolution ToF imaging via optical multiplexing and compressive sensing. Our approach is based on the observation that, while depth is non-linearly related to ToF pixel measurements, a phasor representation of captured images results in a linear image formation model. We utilize this property to develop a CS-based technique that is used to recover high resolution 3D images. Based on the proposed architecture, we developed a prototype 1-megapixel compressive ToF camera that achieves as much as 4× improvement in spatial resolution and 3× improvement for natural scenes. We believe that our proposed CS-ToF architecture provides a simple and low-cost solution to improve the spatial resolution of ToF and related sensors.

摘要

由于飞行时间(ToF)传感器具有成本效益、结构简单和体积紧凑等优点,基于其的三维成像在许多应用中迅速得到广泛采用。然而,由于物理制造限制,当前一代ToF相机的空间分辨率较低。在本文中,我们提出了CS-ToF,这是一种通过光学复用和压缩感知实现高空间分辨率ToF成像的成像架构。我们的方法基于这样的观察结果:虽然深度与ToF像素测量值呈非线性关系,但捕获图像的相量表示会产生线性图像形成模型。我们利用这一特性开发了一种基于压缩感知的技术,用于恢复高分辨率三维图像。基于所提出的架构,我们开发了一款100万像素的压缩ToF相机原型,其空间分辨率提高了4倍,自然场景下的分辨率提高了3倍。我们相信,我们提出的CS-ToF架构为提高ToF及相关传感器的空间分辨率提供了一种简单且低成本的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验