Suppr超能文献

多发性硬化症的代谢缺陷。

Metabolic defects in multiple sclerosis.

机构信息

Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Cameco MS Neuroscience Research Center, Saskatoon City Hospital, Saskatoon, SK, Canada; Department of Public Health, Concordia University of Edmonton, Edmonton, AB, Canada.

Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria.

出版信息

Mitochondrion. 2019 Jan;44:7-14. doi: 10.1016/j.mito.2017.12.005. Epub 2017 Dec 13.

Abstract

Brain injuries in multiple sclerosis (MS) involve immunopathological, structural and metabolic defects on myelin sheath, oligodendrocytes (OLs), axons and neurons suggesting that different cellular mechanisms ultimately result in the formation of MS plaques, demyelination, inflammation and brain damage. Bioenergetics, oxygen and ion metabolism dominate the metabolic and biochemical pathways that maintain neuronal viability and impulse transmission which directly or indirectly point to mitochondrial integrity and adenosine triphosphate (ATP) availability indicating the involvement of mitochondria in the pathogenesis of MS. Loss of myelin proteins including myelin basic protein (MBP), proteolipid protein (PLP), myelin associated glycoprotein (MAG), myelin oligodendrocyte glycoproetin (MOG), 2, 3,-cyclic nucleotide phosphodiestarase (CNPase); microglia and microphage activation, oligodendrocyte apoptosis as well as expression of inducible nitric oxide synthase (i-NOS) and myeloperoxidase activities have been implicated in a subset of Balo's type and relapsing remitting MS (RRMS) lesions indicating the involvement of metabolic defects and oxidative stress in MS. Here, we provide an insighting review of defects in cellular metabolism including energy, oxygen and metal metabolism in MS as well as the relevance of animal models of MS in understanding the molecular, biochemical and cellular mechanisms of MS pathogenesis. Additionally, we also discussed the potential for mitochondrial targets and antioxidant protection for therapeutic benefits in MS.

摘要

多发性硬化症 (MS) 的脑损伤涉及髓鞘、少突胶质细胞 (OLs)、轴突和神经元的免疫病理、结构和代谢缺陷,这表明不同的细胞机制最终导致 MS 斑块、脱髓鞘、炎症和脑损伤的形成。生物能量学、氧和离子代谢主导着维持神经元活力和冲动传递的代谢和生化途径,这些途径直接或间接地指向线粒体的完整性和三磷酸腺苷 (ATP) 的可用性,表明线粒体参与了 MS 的发病机制。髓鞘蛋白的丧失,包括髓鞘碱性蛋白 (MBP)、髓鞘相关糖蛋白 (MAG)、少突胶质细胞糖蛋白 (MOG)、2,3-环核苷酸磷酸二酯酶 (CNPase);小胶质细胞和巨噬细胞的激活、少突胶质细胞凋亡以及诱导型一氧化氮合酶 (i-NOS) 和髓过氧化物酶活性的表达,都与 Balo 型和复发性缓解型多发性硬化症 (RRMS) 病变有关,这表明代谢缺陷和氧化应激在 MS 中的参与。在这里,我们提供了对细胞代谢缺陷的深入了解,包括 MS 中的能量、氧和金属代谢,以及 MS 动物模型在理解 MS 发病机制的分子、生化和细胞机制方面的相关性。此外,我们还讨论了线粒体靶点和抗氧化保护在 MS 治疗中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验