文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于确定转移性肿瘤原发部位的综合工具。

An integrated tool for determining the primary origin site of metastatic tumours.

机构信息

ONKOS Molecular Diagnostics, Ribeirão Preto, São Paulo, Brazil.

Department of Research and Development (R&D), Fleury Group, Sao Paulo, Brazil.

出版信息

J Clin Pathol. 2018 Jul;71(7):584-593. doi: 10.1136/jclinpath-2017-204887. Epub 2017 Dec 16.


DOI:10.1136/jclinpath-2017-204887
PMID:29248889
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6204949/
Abstract

AIMS: Cancers of unknown primary sites account for 3%-5% of all malignant neoplasms. Current diagnostic workflows based on immunohistochemistry and imaging tests have low accuracy and are highly subjective. We aim to develop and validate a gene-expression classifier to identify potential primary sites for metastatic cancers more accurately. METHODS: We built the largest Reference Database (RefDB) reported to date, composed of microarray data from 4429 known tumour samples obtained from 100 different sources and divided into 25 cancer superclasses formed by 58 cancer subclass. Based on specific profiles generated by 95 genes, we developed a gene-expression classifier which was first trained and tested by a cross-validation. Then, we performed a double-blinded retrospective validation study using a real-time PCR-based assay on a set of 105 metastatic formalin-fixed, paraffin-embedded (FFPE) samples. A histopathological review performed by two independent pathologists served as a reference diagnosis. RESULTS: The gene-expression classifier correctly identified, by a cross-validation, 86.6% of the expected cancer superclasses of 4429 samples from the RefDB, with a specificity of 99.43%. Next, the performance of the algorithm for classifying the validation set of metastatic FFPE samples was 83.81%, with 99.04% specificity. The overall reproducibility of our gene-expression-classifier system was 97.22% of precision, with a coefficient of variation for inter-assays and intra-assays and intra-lots <4.1%. CONCLUSION: We developed a complete integrated workflow for the classification of metastatic tumour samples which may help on tumour primary site definition.

摘要

目的:不明原发灶肿瘤约占所有恶性肿瘤的 3%-5%。目前基于免疫组化和影像学检查的诊断流程准确性较低,且主观性较强。我们旨在开发和验证一种基因表达分类器,以更准确地识别转移性癌症的潜在原发灶。

方法:我们构建了迄今为止报道的最大参考数据库(RefDB),该数据库由来自 100 个不同来源的 4429 个已知肿瘤样本的微阵列数据组成,分为由 58 个癌症亚类组成的 25 个癌症超级类。基于由 95 个基因产生的特定谱,我们开发了一种基因表达分类器,该分类器首先通过交叉验证进行训练和测试。然后,我们使用基于实时 PCR 的检测方法对 105 例转移性福尔马林固定、石蜡包埋(FFPE)样本进行了双盲回顾性验证研究。由两名独立病理学家进行的组织病理学回顾作为参考诊断。

结果:基因表达分类器通过交叉验证正确识别了 RefDB 中 4429 个样本的预期癌症超级类的 86.6%,特异性为 99.43%。接下来,该算法对转移性 FFPE 样本验证集的分类性能为 83.81%,特异性为 99.04%。我们的基因表达分类器系统的整体重现性为 97.22%的精度,批间和批内变异系数<4.1%。

结论:我们开发了一种完整的集成工作流程,用于分类转移性肿瘤样本,这可能有助于确定肿瘤的原发灶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62d8/6204949/e17744f163d0/jclinpath-2017-204887f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62d8/6204949/62c6263d0ac2/jclinpath-2017-204887f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62d8/6204949/e17744f163d0/jclinpath-2017-204887f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62d8/6204949/62c6263d0ac2/jclinpath-2017-204887f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62d8/6204949/e17744f163d0/jclinpath-2017-204887f02.jpg

相似文献

[1]
An integrated tool for determining the primary origin site of metastatic tumours.

J Clin Pathol. 2017-12-16

[2]
Development and validation of a gene expression tumour classifier for cancer of unknown primary.

Pathology. 2015-1

[3]
Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin.

Mod Pathol. 2016-6

[4]
CUP-AI-Dx: A tool for inferring cancer tissue of origin and molecular subtype using RNA gene-expression data and artificial intelligence.

EBioMedicine. 2020-11

[5]
Validation of a microRNA-based qRT-PCR test for accurate identification of tumor tissue origin.

Mod Pathol. 2010-3-26

[6]
A 92-gene cancer classifier predicts the site of origin for neuroendocrine tumors.

Mod Pathol. 2013-7-12

[7]
Efficient identification of miRNAs for classification of tumor origin.

J Mol Diagn. 2013-11-5

[8]
An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin.

Cancer Res. 2005-5-15

[9]
Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis.

Lancet Oncol. 2016-8-27

[10]
Molecular classification of human cancers using a 92-gene real-time quantitative polymerase chain reaction assay.

Arch Pathol Lab Med. 2006-4

引用本文的文献

[1]
New techniques to identify the tissue of origin for cancer of unknown primary in the era of precision medicine: progress and challenges.

Brief Bioinform. 2024-1-22

[2]
Metastatic lung cancer with occult primary site: a difficult diagnosis.

Int J Clin Exp Pathol. 2023-1-15

[3]
Extent of diagnostic inquiry among a population-based cohort of patients with cancer of unknown primary.

Cancer Rep Rev. 2019-9

本文引用的文献

[1]
Cancer of unknown primary site.

N Engl J Med. 2014-8-21

[2]
Aromatase inhibitors for metastatic male breast cancer: molecular, endocrine, and clinical considerations.

Breast Cancer Res Treat. 2014-9

[3]
BRAF mutations: signaling, epidemiology, and clinical experience in multiple malignancies.

Cancer Control. 2014-7

[4]
Progress in molecular-based management of differentiated thyroid cancer.

Lancet. 2013-3-22

[5]
A multicenter study directly comparing the diagnostic accuracy of gene expression profiling and immunohistochemistry for primary site identification in metastatic tumors.

Am J Surg Pathol. 2013-7

[6]
Molecular profiling diagnosis in unknown primary cancer: accuracy and ability to complement standard pathology.

J Natl Cancer Inst. 2013-5-2

[7]
Cancer of unknown primary sites: what radiologists need to know and what oncologists want to know.

AJR Am J Roentgenol. 2013-3

[8]
BRAF V600E inhibition in anaplastic thyroid cancer.

N Engl J Med. 2013-2-14

[9]
Blinded comparator study of immunohistochemical analysis versus a 92-gene cancer classifier in the diagnosis of the primary site in metastatic tumors.

J Mol Diagn. 2012-12-31

[10]
Molecular gene expression profiling to predict the tissue of origin and direct site-specific therapy in patients with carcinoma of unknown primary site: a prospective trial of the Sarah Cannon research institute.

J Clin Oncol. 2012-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索