Kepaptsoglou Demie, Baran Jakub D, Azough Feridoon, Ekren Dursun, Srivastava Deepanshu, Molinari Marco, Parker Stephen C, Ramasse Quentin M, Freer Robert
SuperSTEM Laboratory, SciTech Daresbury Campus , Daresbury WA4 4AD, U.K.
Department of Chemistry, University of Bath , Claverton Down, Bath BA2 7AY, U.K.
Inorg Chem. 2018 Jan 2;57(1):45-55. doi: 10.1021/acs.inorgchem.7b01584. Epub 2017 Dec 19.
A combination of experimental and computational techniques has been employed to explore the crystal structure and thermoelectric properties of A-site-deficient perovskite LaNbO ceramics. Crystallographic data from X-ray and electron diffraction confirmed that the room temperature structure is orthorhombic with Cmmm as a space group. Atomically resolved imaging and analysis showed that there are two distinct A sites: one is occupied with La and vacancies, and the second site is fully unoccupied. The diffuse superstructure reflections observed through diffraction techniques are shown to originate from La vacancy ordering. LaNbO ceramics sintered in air showed promising high-temperature thermoelectric properties with a high Seebeck coefficient of S = -650 to -700 μV/K and a low and temperature-stable thermal conductivity of k = 2-2.2 W/m·K in the temperature range of 300-1000 K. First-principles electronic structure calculations are used to link the temperature dependence of the Seebeck coefficient measured experimentally to the evolution of the density of states with temperature and indicate possible avenues for further optimization through electron doping and control of the A-site occupancies. Moreover, lattice thermal conductivity calculations give insights into the dependence of the thermal conductivity on specific crystallographic directions of the material, which could be exploited via nanostructuring to create high-efficiency compound thermoelectrics.
采用实验和计算技术相结合的方法,探索了A位缺陷钙钛矿LaNbO陶瓷的晶体结构和热电性能。X射线和电子衍射的晶体学数据证实,室温结构为正交晶系,空间群为Cmmm。原子分辨成像和分析表明,存在两个不同的A位:一个被La和空位占据,第二个位置完全未被占据。通过衍射技术观察到的漫散射超结构反射表明源于La空位有序化。在空气中烧结的LaNbO陶瓷在300-1000K温度范围内表现出有前景的高温热电性能,塞贝克系数S = -650至-700μV/K,热导率低且温度稳定,k = 2-2.2W/m·K。第一性原理电子结构计算用于将实验测量的塞贝克系数的温度依赖性与态密度随温度的演变联系起来,并指出通过电子掺杂和控制A位占有率进行进一步优化的可能途径。此外,晶格热导率计算深入了解了热导率对材料特定晶体学方向的依赖性,这可以通过纳米结构化来开发高效复合热电材料。