Centre for Applied Electron Spin Resonance, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K.
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QR, U.K.
J Am Chem Soc. 2018 Feb 21;140(7):2514-2527. doi: 10.1021/jacs.7b11056. Epub 2018 Feb 6.
Cytochrome P450 (CYP) monooxygenases catalyze the oxidation of chemically inert carbon-hydrogen bonds in diverse endogenous and exogenous organic compounds by atmospheric oxygen. This C-H bond oxy-functionalization activity has huge potential in biotechnological applications. Class I CYPs receive the two electrons required for oxygen activation from NAD(P)H via a ferredoxin reductase and ferredoxin. The interaction of Class I CYPs with their cognate ferredoxin is specific. In order to reconstitute the activity of diverse CYPs, structural characterization of CYP-ferredoxin complexes is necessary, but little structural information is available. Here we report a structural model of such a complex (CYP199A2-HaPux) in frozen solution derived from distance and orientation restraints gathered by the EPR technique of orientation-selective double electron-electron resonance (os-DEER). The long-lived oscillations in the os-DEER spectra were well modeled by a single orientation of the CYP199A2-HaPux complex. The structure is different from the two known Class I CYP-Fdx structures: CYP11A1-Adx and CYP101A1-Pdx. At the protein interface, HaPux residues in the [FeS] cluster-binding loop and the α3 helix and the C-terminus residue interact with CYP199A2 residues in the proximal loop and the C helix. These residue contacts are consistent with biochemical data on CYP199A2-ferredoxin binding and electron transfer. Electron-tunneling calculations indicate an efficient electron-transfer pathway from the [FeS] cluster to the heme. This new structural model of a CYP-Fdx complex provides the basis for tailoring CYP enzymes for which the cognate ferredoxin is not known, to accept electrons from HaPux and display monooxygenase activity.
细胞色素 P450 (CYP) 单加氧酶通过大气中的氧气催化多种内源性和外源性有机化合物中化学惰性的碳-氢键氧化。这种 C-H 键氧功能化活性在生物技术应用中具有巨大的潜力。I 类 CYP 通过黄素蛋白还原酶和黄素蛋白从 NAD(P)H 接收氧活化所需的两个电子。I 类 CYP 与其同工型黄素蛋白的相互作用是特异性的。为了重新构建多种 CYP 的活性,需要对 CYP-黄素蛋白复合物进行结构表征,但几乎没有结构信息可用。在这里,我们报道了一种冷冻溶液中此类复合物(CYP199A2-HaPux)的结构模型,该模型是通过取向选择性双电子-电子共振(os-DEER)的 EPR 技术收集的距离和取向约束得出的。os-DEER 光谱中的长寿命振荡通过 CYP199A2-HaPux 复合物的单一取向得到很好的模拟。该结构与两种已知的 I 类 CYP-Fdx 结构(CYP11A1-Adx 和 CYP101A1-Pdx)不同。在蛋白质界面上,[FeS]簇结合环和α3 螺旋中的 HaPux 残基以及 C 末端残基与 CYP199A2 中近端环和 C 螺旋的残基相互作用。这些残基接触与关于 CYP199A2-黄素蛋白结合和电子转移的生化数据一致。电子隧道计算表明,从 [FeS]簇到血红素的电子转移有效途径。这种新的 CYP-Fdx 复合物结构模型为定制不知道其同源黄素蛋白的 CYP 酶提供了基础,使其能够接受 HaPux 的电子并显示单加氧酶活性。